“Como melhorar a precisão do classificador florestal aleatório” Respostas de código

Como melhorar a precisão do classificador florestal aleatório

from sklearn.model_selection import GridSearchCV
cv = GridSearchCV(rfc,parameters,cv=5)
cv.fit(train_features,train_label.values.ravel())
Wide-eyed Whale

Como melhorar a precisão do classificador florestal aleatório

display(cv)
Wide-eyed Whale

Como melhorar a precisão do classificador florestal aleatório

def display(results):
    print(f'Best parameters are: {results.best_params_}')
    print("\n")
    mean_score = results.cv_results_['mean_test_score']
    std_score = results.cv_results_['std_test_score']
    params = results.cv_results_['params']
    for mean,std,params in zip(mean_score,std_score,params):
        print(f'{round(mean,3)} + or -{round(std,3)} for the {params}')
Wide-eyed Whale

Respostas semelhantes a “Como melhorar a precisão do classificador florestal aleatório”

Perguntas semelhantes a “Como melhorar a precisão do classificador florestal aleatório”

Mais respostas relacionadas para “Como melhorar a precisão do classificador florestal aleatório” em Python

Procure respostas de código populares por idioma

Procurar outros idiomas de código