Encontre os governantes de Golomb mais curtos

15

As réguas de Golomb são conjuntos de números inteiros não negativos, de modo que não existem dois pares de números inteiros no conjunto à mesma distância.

Por exemplo, [0, 1, 4, 6]é uma régua de Golomb porque todas as distâncias entre dois números inteiros neste conjunto são únicas:

0, 1 -> distance 1
0, 4 -> distance 4
0, 6 -> distance 6
1, 4 -> distance 3
1, 6 -> distance 5
4, 6 -> distance 2

Por uma questão de simplicidade neste desafio (e como a tradução é trivial), impomos que uma régua de Golomb sempre contenha o número0 (como o exemplo anterior).

Como esse conjunto é longo 4, dizemos que este é um governante da ordem Golomb 4. A maior distância deste conjunto (ou elemento, já que 0está sempre no conjunto) é 6, portanto, dizemos que este é um governante de Golomb de comprimento 6 .

Sua tarefa

Encontre réguas de Golomb da ordem 50 de 100(inclusive) com o menor comprimento possível. As réguas encontradas não precisam ser ótimas (veja abaixo).

Optimalidade

Uma régua de Golomb de ordem N, é dito ser o ideal, se não houver outra régua de Golomb de ordem Nque tem um comprimento menor.

Os governantes ideais de Golomb são conhecidos por encomendas inferiores a 28 , embora encontrar e provar a otimização seja cada vez mais difícil à medida que a ordem aumenta.

Portanto, não é esperado que você encontre a régua Golomb ideal para qualquer uma das ordens entre 50e 100(e menos ainda que você possa provar que elas são ótimas).

Não há limites de tempo na execução do seu programa.

Linha de base

A lista abaixo é a lista dos comprimentos das réguas de Golomb de 50até 100(em ordem) avaliadas com uma estratégia de pesquisa ingênua (Agradecemos a @PeterTaylor para esta lista):

[4850 5122 5242 5297 5750 5997 6373 6800 6924 7459 7546 7788 8219 8502 8729 8941 9881 10199 10586 10897 11288 11613 11875 12033 12930 13393 14046 14533 14900 15165 15687 15971 16618 17354 17931 18844 19070 19630 19669 20721 21947 22525 23290 23563 23880 24595 24767 25630 26036 26254 27218]

A soma de todos esses comprimentos é 734078.

Pontuação

Sua pontuação será a soma dos comprimentos de todos os seus governantes Golomb entre 50e 100, dividido pela soma dos comprimentos dos governantes Golomb entre 50e 100na linha de base: 734078.

Caso você não tenha encontrado uma régua de Golomb para uma ordem específica, calcule sua pontuação da mesma maneira, usando o dobro do comprimento na linha de base para essa ordem específica.

A resposta com a menor pontuação vence.

Em caso de empate, os comprimentos da maior ordem em que as duas respostas diferem são comparados e a mais curta vence. Caso ambas as respostas tenham o mesmo tamanho para todos os pedidos, a resposta que foi lançada primeiro vence.

Fatalizar
fonte
2
Relacionado. (Mesmo desafio em 2D.)
Martin Ender
E entrada OEIS .
Martin Ender
Quando você diz réguas entre 50 e 100, você quer dizer o intervalo [50, 100)? Então, não incluindo a régua da ordem 100? Porque a linha de base contém apenas 50 elementos.
orlp
1
Nota lateral: o menor comprimento possível de uma régua de ordem Golomb né n(n-1)/2, já que é quantas diferenças positivas existem. Portanto, a menor pontuação possível nesse desafio é 147050/734078 > 0.2003193.
Greg Martin
2
@GregMartin Obrigado, embora essa não seja a "menor pontuação possível", mas um limite inferior à menor pontuação possível!
Fatalize

Respostas:

8

C #, 259421/734078 ~ = 0,3534

Métodos

Finalmente encontrei uma explicação mais ou menos legível do método do campo projetivo (método de Singer) em Construções de conjuntos generalizados de Sidon , embora eu ainda ache que pode ser melhorado um pouco. Acontece ser mais semelhante ao método do campo afim (método de Bose) do que os outros trabalhos que li tinham comunicado.

q=paF(q)

F(q2)g2F(q2)kF(q)

{a:g2akg2Fq}
q21q21

F(q3)g3F(q3)kF(q)

{0}{a:g3akg3Fq}
q2+q+1

Observe que esses métodos entre eles fornecem os valores mais conhecidos para todos os comprimentos maiores que 16. Tomas Rokicki e Gil Dogon estão oferecendo uma recompensa de US $ 250 para quem os vencer por comprimentos de 36 a 40000. Portanto, qualquer um que vencer essa resposta recebe um valor monetário. prêmio.

Código

O C # não é muito idiomático, mas preciso compilar com uma versão antiga do Mono. Além disso, apesar da verificação de argumentos, esse não é um código de qualidade de produção. Não estou feliz com os tipos, mas acho que não há uma solução muito boa para isso em c #. Talvez em F # ou C ++ com modelos insanos.

using System;
using System.Collections.Generic;
using System.Linq;

namespace Sandbox {
    class Program {
        static void Main(string[] args) {
            var winners = ComputeRulerRange(50, 100);
            int total = 0;
            for (int i = 50; i <= 100; i++) {
                Console.WriteLine("{0}:\t{1}", i, winners[i][i - 1]);
                total += winners[i][i - 1];
            }
            Console.WriteLine("\t{0}", total);
        }

        static IDictionary<int, int[]> ComputeRulerRange(int min, int max) {
            var best = new Dictionary<int, int[]>();

            var naive = Naive(max);
            for (int i = min; i <= max; i++) best[i] = naive.Take(i).ToArray();

            var finiteFields = FiniteFields(max * 11 / 10).OrderBy(x => x.Size).ToArray();

            // The projective plane method generates rulers of length p^a + 1 for prime powers p^a.
            // We can then look at subrulers for a reasonable range, say down to two prime powers below.
            for (int ppi = 0; ppi < finiteFields.Length; ppi++) {
                // Range under consideration
                var field = finiteFields[ppi];
                int q = field.Size;
                int subFrom = Math.Max(min, ppi >= 2 ? finiteFields[ppi - 2].Size : 1);
                int subTo = Math.Min(max, q + 1);
                if (subTo < subFrom) continue;

                int m = q * q + q + 1;
                foreach (var ruler in ProjectiveRulers(field)) {
                    for (int sub = subFrom; sub <= subTo; sub++) {
                        var subruler = BestSubruler(ruler, sub, m);
                        if (subruler[sub - 1] < best[sub][sub - 1]) best[sub] = subruler;
                    }
                }
            }

            // Similarly for the affine plane method, which generates rulers of length p^a for prime powers p^a
            for (int ppi = 0; ppi < finiteFields.Length; ppi++) {
                // Range under consideration
                var field = finiteFields[ppi];
                int q = field.Size;
                int subFrom = Math.Max(min, ppi >= 2 ? finiteFields[ppi - 2].Size : 1);
                int subTo = Math.Min(max, q);
                if (subTo < subFrom) continue;

                int m = q * q - 1;
                foreach (var ruler in AffineRulers(field)) {
                    for (int sub = subFrom; sub <= subTo; sub++) {
                        var subruler = BestSubruler(ruler, sub, m);
                        if (subruler[sub - 1] < best[sub][sub - 1]) best[sub] = subruler;
                    }
                }
            }

            return best;
        }

        static int[] BestSubruler(int[] ruler, int sub, int m) {
            int[] expand = new int[ruler.Length + sub - 1];
            for (int i = 0; i < ruler.Length; i++) expand[i] = ruler[i];
            for (int i = 0; i < sub - 1; i++) expand[ruler.Length + i] = ruler[i] + m;

            int best = m, bestIdx = -1;
            for (int i = 0; i < ruler.Length; i++) {
                if (expand[i + sub - 1] - expand[i] < best) {
                    best = expand[i + sub - 1] - expand[i];
                    bestIdx = i;
                }
            }

            return expand.Skip(bestIdx).Take(sub).Select(x => x - ruler[bestIdx]).ToArray();
        }

        static IEnumerable<int[]> ProjectiveRulers(FiniteField field) {
            var q = field.Size;
            var fq3 = PowerField.Create(field, 3);
            var m = q * q + q + 1;
            var g = fq3.Generators.First();

            // Define the set T<k> = {0} \union {a \in [q^3-1] : g^a - kg \in F(q)} for 0 != k \in F(q)
            // This could alternatively be T<k> = {0} \union {log_g(b - kg) : b in F(q)} for 0 != k \in F(q)
            // Then T<k> % (q^2 + q + 1) gives a Golomb ruler.
            // For a given generator we seem to get the same ruler for every k.
            var t_k = new HashSet<int>();
            t_k.Add(0);
            var ga = fq3.One;
            for (int a = 1; a < fq3.Size; a++) {
                ga = ga * g;
                if (fq3.Convert(ga + g) < q) t_k.Add(a % m);
            }

            // TODO: optimise by detecting duplicates
            for (int s = 1; s < m; s++) {
                if (Gcd(s, m) == 1) yield return t_k.Select(x => x * s % m).OrderBy(x => x).ToArray();
            }
        }

        static IEnumerable<int[]> AffineRulers(FiniteField field) {
            var q = field.Size;
            var fq2 = PowerField.Create(field, 2);
            var m = q * q - 1;
            var g = fq2.Generators.First();

            // Define the set T<k> = {0} \union {a \in [q^2-1] : g^a - kg \in F(q)} for 0 != k \in F(q)
            // Then T<k> % (q^2 - 1) gives a Golomb ruler.
            var t_k = new HashSet<int>();
            var ga = fq2.One;
            for (int a = 1; a < fq2.Size; a++) {
                ga = ga * g;
                if (fq2.Convert(ga + g) < q) t_k.Add(a % m);
            }

            // TODO: optimise by detecting duplicates
            for (int s = 1; s < m; s++) {
                if (Gcd(s, m) == 1) yield return t_k.Select(x => x * s % m).OrderBy(x => x).ToArray();
            }
        }

        static int Gcd(int a, int b) {
            while (a != 0) {
                var t = b % a;
                b = a;
                a = t;
            }

            return b;
        }

        static int[] Naive(int size) {
            if (size == 0) return new int[0];
            if (size == 1) return new int[] { 0 };

            int[] ruler = new int[size];
            var diffs = new HashSet<int>();
            int i = 1, c = 1;
            while (true) {
                bool valid = true;
                for (int j = 0; j < i; j++) {
                    if (diffs.Contains(c - ruler[j])) { valid = false; break; }
                }

                if (valid) {
                    for (int j = 0; j < i; j++) diffs.Add(c - ruler[j]);
                    ruler[i++] = c;
                    if (i == size) return ruler;
                }

                c++;
            }
        }

        static IEnumerable<FiniteField> FiniteFields(int max) {
            bool[] isComposite = new bool[max + 1];
            for (int p = 2; p < isComposite.Length; p++) {
                if (!isComposite[p]) {
                     FiniteField baseField = new PrimeField(p); yield return baseField;
                    for (int pp = p * p, pow = 2; pp < max; pp *= p, pow++) yield return PowerField.Create(baseField, pow);
                    for (int pq = p * p; pq <= max; pq += p) isComposite[pq] = true;
                }
            }
        }
    }

    public abstract class FiniteField {
        private Lazy<FiniteFieldElement> _Zero;
        private Lazy<FiniteFieldElement> _One;

        public FiniteFieldElement Zero { get { return _Zero.Value; } }
        public FiniteFieldElement One { get { return _One.Value; } }
        public IEnumerable<FiniteFieldElement> Generators {
            get {
                for (int _g = 1; _g < Size; _g++) {
                    int pow = 0;
                    FiniteFieldElement g = Convert(_g), gpow = One;
                    while (true) {
                        pow++;
                        gpow = gpow * g;
                        if (gpow == One) break;
                        if (pow > Size) {
                            throw new Exception("Is this really a field? " + this);
                        }
                    }
                    if (pow == Size - 1) yield return g;
                }
            }
        }

        public abstract int Size { get; }
        internal abstract FiniteFieldElement Convert(int i);
        internal abstract int Convert(FiniteFieldElement f);

        internal abstract bool Eq(FiniteFieldElement a, FiniteFieldElement b);
        internal abstract FiniteFieldElement Negate(FiniteFieldElement a);
        internal abstract FiniteFieldElement Add(FiniteFieldElement a, FiniteFieldElement b);
        internal abstract FiniteFieldElement Mul(FiniteFieldElement a, FiniteFieldElement b);

        protected FiniteField() {
            _Zero = new Lazy<FiniteFieldElement>(() => Convert(0));
            _One = new Lazy<FiniteFieldElement>(() => Convert(1));
        }
    }

    public abstract class FiniteFieldElement {
        internal abstract FiniteField Field { get; }

        public static FiniteFieldElement operator -(FiniteFieldElement a) {
            return a.Field.Negate(a);
        }

        public static FiniteFieldElement operator +(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != b.Field) throw new ArgumentOutOfRangeException("b");
            return a.Field.Add(a, b);
        }

        public static FiniteFieldElement operator *(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != b.Field) throw new ArgumentOutOfRangeException("b");
            return a.Field.Mul(a, b);
        }

        public static bool operator ==(FiniteFieldElement a, FiniteFieldElement b) {
            if (Equals(a, null)) return Equals(b, null);
            else if (Equals(b, null)) return false;

            if (a.Field != b.Field) throw new ArgumentOutOfRangeException("b");
            return a.Field.Eq(a, b);
        }

        public static bool operator !=(FiniteFieldElement a, FiniteFieldElement b) { return !(a == b); }

        public override bool Equals(object obj) {
            return (obj is FiniteFieldElement) && (obj as FiniteFieldElement).Field == Field && this == (obj as FiniteFieldElement);
        }

        public override int GetHashCode() { return Field.Convert(this).GetHashCode(); }

        public override string ToString() { return Field.Convert(this).ToString(); }
    }

    public class PrimeField : FiniteField {
        private readonly int _Prime;
        private readonly PrimeFieldElement[] _Featherweight;

        internal int Prime { get { return _Prime; } }
        public override int Size { get { return _Prime; } }

        public PrimeField(int prime) {
            if (prime < 2) throw new ArgumentOutOfRangeException("prime");

            // TODO A primality test would be nice...

            _Prime = prime;
            _Featherweight = new PrimeFieldElement[Math.Min(prime, 256)];
        }

        internal override FiniteFieldElement Convert(int i) {
            if (i < 0 || i >= _Prime) throw new ArgumentOutOfRangeException("i");
            if (i >= _Featherweight.Length) return new PrimeFieldElement(this, i);
            if (Equals(_Featherweight[i], null)) _Featherweight[i] = new PrimeFieldElement(this, i);
            return _Featherweight[i];
        }

        internal override int Convert(FiniteFieldElement f) {
            if (f == null) throw new ArgumentNullException("f");
            if (f.Field != this) throw new ArgumentOutOfRangeException("f");

            return (f as PrimeFieldElement).Value;
        }

        internal override bool Eq(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            if (b.Field != this) throw new ArgumentOutOfRangeException("b");

            return (a as PrimeFieldElement).Value == (b as PrimeFieldElement).Value;
        }

        internal override FiniteFieldElement Negate(FiniteFieldElement a) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            var fa = a as PrimeFieldElement;
            return fa.Value == 0 ? fa : Convert(_Prime - fa.Value);
        }

        internal override FiniteFieldElement Add(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            if (b.Field != this) throw new ArgumentOutOfRangeException("b");

            return Convert(((a as PrimeFieldElement).Value + (b as PrimeFieldElement).Value) % _Prime);
        }

        internal override FiniteFieldElement Mul(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            if (b.Field != this) throw new ArgumentOutOfRangeException("b");

            return Convert(((a as PrimeFieldElement).Value * (b as PrimeFieldElement).Value) % _Prime);
        }

        public override string ToString() { return string.Format("F({0})", _Prime); }
    }

    internal class PrimeFieldElement : FiniteFieldElement {
        private readonly PrimeField _Field;
        private readonly int _Value;

        internal override FiniteField Field { get { return _Field; } }
        internal int Value { get { return _Value; } }

        internal PrimeFieldElement(PrimeField field, int val) {
            if (field == null) throw new ArgumentNullException("field");
            if (val < 0 || val >= field.Prime) throw new ArgumentOutOfRangeException("val");

            _Field = field;
            _Value = val;
        }
    }

    public class PowerField : FiniteField {
        private readonly FiniteField _BaseField;
        private readonly FiniteFieldElement[] _Polynomial;

        internal FiniteField BaseField { get { return _BaseField; } }
        internal int Power { get { return _Polynomial.Length; } }
        public override int Size { get { return (int)Math.Pow(_BaseField.Size, Power); } }

        public PowerField(FiniteField baseField, FiniteFieldElement[] polynomial) {
            if (baseField == null) throw new ArgumentNullException("baseField");
            if (polynomial == null) throw new ArgumentNullException("polynomial");
            if (polynomial.Length < 2) throw new ArgumentOutOfRangeException("polynomial");
            for (int i = 0; i < polynomial.Length; i++) if (polynomial[i].Field != baseField) throw new ArgumentOutOfRangeException("polynomial[" + i + "]");

            // TODO Check that the polynomial is irreducible over the base field.

            _BaseField = baseField;
            _Polynomial = polynomial.ToArray();
        }

        internal override FiniteFieldElement Convert(int i) {
            if (i < 0 || i >= Size) throw new ArgumentOutOfRangeException("i");

            var vec = new FiniteFieldElement[Power];
            for (int j = 0; j < vec.Length; j++) {
                vec[j] = BaseField.Convert(i % BaseField.Size);
                i /= BaseField.Size;
            }

            return new PowerFieldElement(this, vec);
        }

        internal override int Convert(FiniteFieldElement f) {
            if (f == null) throw new ArgumentNullException("f");
            if (f.Field != this) throw new ArgumentOutOfRangeException("f");

            var pf = f as PowerFieldElement;
            int i = 0;
            for (int j = Power - 1; j >= 0; j--) i = i * BaseField.Size + BaseField.Convert(pf.Value[j]);
            return i;
        }

        internal override bool Eq(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            if (b.Field != this) throw new ArgumentOutOfRangeException("b");

            var fa = a as PowerFieldElement;
            var fb = b as PowerFieldElement;
            for (int i = 0; i < Power; i++) if (fa.Value[i] != fb.Value[i]) return false;
            return true;
        }

        internal override FiniteFieldElement Negate(FiniteFieldElement a) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            return new PowerFieldElement(this, (a as PowerFieldElement).Value.Select(x => -x).ToArray());
        }

        internal override FiniteFieldElement Add(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            if (b.Field != this) throw new ArgumentOutOfRangeException("b");

            var fa = a as PowerFieldElement;
            var fb = b as PowerFieldElement;
            var vec = new FiniteFieldElement[Power];
            for (int i = 0; i < Power; i++) vec[i] = fa.Value[i] + fb.Value[i];
            return new PowerFieldElement(this, vec);
        }

        internal override FiniteFieldElement Mul(FiniteFieldElement a, FiniteFieldElement b) {
            if (a.Field != this) throw new ArgumentOutOfRangeException("a");
            if (b.Field != this) throw new ArgumentOutOfRangeException("b");

            var fa = a as PowerFieldElement;
            var fb = b as PowerFieldElement;

            // We consider fa and fb as polynomials of a variable x and multiply modulo (x^Power - _Polynomial).
            // But to keep things simple we want to manage the cascading modulo.
            var vec = Enumerable.Repeat(BaseField.Zero, Power).ToArray();
            var fa_xi = fa.Value.ToArray();
            for (int i = 0; i < Power; i++) {
                for (int j = 0; j < Power; j++) vec[j] += fb.Value[i] * fa_xi[j];
                if (i < Power - 1) ShiftLeft(fa_xi);
            }

            return new PowerFieldElement(this, vec);
        }

        private void ShiftLeft(FiniteFieldElement[] vec) {
            FiniteFieldElement head = vec[vec.Length - 1];
            for (int i = vec.Length - 1; i > 0; i--) vec[i] = vec[i - 1] + head * _Polynomial[i];
            vec[0] = head * _Polynomial[0];
        }

        public static FiniteField Create(FiniteField baseField, int power) {
            if (baseField == null) throw new ArgumentNullException("baseField");
            if (power < 2) throw new ArgumentOutOfRangeException("power");

            // Since the field is cyclic, there is only one finite field of a given prime power order (up to isomorphism).
            // For most practical purposes that means that we can pick any arbitrary monic irreducible polynomial.
            // We can abuse PowerField to do polynomial multiplication in the base field.
            var fakeField = new PowerField(baseField, Enumerable.Repeat(baseField.Zero, power).ToArray());
            var excluded = new HashSet<FiniteFieldElement>();
            for (int lpow = 1; lpow <= power / 2; lpow++) {
                int upow = power - lpow;
                // Consider all products of a monic polynomial of order lpow with a monic polynomial of order upow.
                int xl = (int)Math.Pow(baseField.Size, lpow);
                int xu = (int)Math.Pow(baseField.Size, upow);
                for (int i = xl; i < 2 * xl; i++) {
                    var pi = fakeField.Convert(i);
                    for (int j = xu; j < 2 * xu; j++) {
                        var pj = fakeField.Convert(j);
                        excluded.Add(-(pi * pj));
                    }
                }
            }

            for (int p = baseField.Size; true; p++) {
                var pp = fakeField.Convert(p) as PowerFieldElement;
                if (!excluded.Contains(pp)) return new PowerField(baseField, pp.Value.ToArray());
            }
        }

        public override string ToString() {
            var sb = new System.Text.StringBuilder();
            sb.AppendFormat("GF({0}) with primitive polynomial x^{1} ", Size, Power);
            for (int i = Power - 1; i >= 0; i--) sb.AppendFormat("+ {0}x^{1}", _Polynomial[i], i);
            sb.AppendFormat(" over base field ");
            sb.Append(_BaseField);
            return sb.ToString();
        }
    }

    internal class PowerFieldElement : FiniteFieldElement {
        private readonly PowerField _Field;
        private readonly FiniteFieldElement[] _Vector; // The version of Mono I have doesn't include IReadOnlyList<T>

        internal override FiniteField Field { get { return _Field; } }
        internal FiniteFieldElement[] Value { get { return _Vector; } }

        internal PowerFieldElement(PowerField field, params FiniteFieldElement[] vector) {
            if (field == null) throw new ArgumentNullException("field");
            if (vector == null) throw new ArgumentNullException("vector");
            if (vector.Length != field.Power) throw new ArgumentOutOfRangeException("vector");
            for (int i = 0; i < vector.Length; i++) if (vector[i].Field != field.BaseField) throw new ArgumentOutOfRangeException("vector[" + i + "]");

            _Field = field;
            _Vector = vector.ToArray();
        }
    }
}

Resultados

Infelizmente, adicionar as réguas levaria cerca de 15 mil caracteres além do limite de tamanho da postagem, então eles estão no pastebin .

Peter Taylor
fonte
Você seria gentil em publicar suas réguas em [50, 100] em algum lugar? Eu tenho um algoritmo genético que quero experimentar, alimentando alguns valores de sementes.
orlp
@orlp, adicionou um link.
Peter Taylor
2
Como eu suspeitava, o algoritmo evolutivo não pode extrair nada de uso desses espécimes superiores. Embora inicialmente parecesse que os algoritmos evolutivos pudessem funcionar (ele se move instantaneamente de governantes inválidos para governantes reais), há muita estrutura global necessária para o algoritmo evolutivo funcionar.
orlp
5

Python 3, pontuação 603001/734078 = 0,82144

Pesquisa ingênua combinada com construção de Erdős – Turan:

2pk+(k2modp),k[0 0,p-1]

Para números primos ímpares p, isso fornece uma régua de golomb assintoticamente ideal.

def isprime(n):
    if n < 2: return False
    if n % 2 == 0: return n == 2
    k = 3
    while k*k <= n:
         if n % k == 0: return False
         k += 2
    return True

rulers = []
ruler = []
d = set()
n = 0
while len(ruler) <= 100:
    order = len(ruler) + 1
    if order > 2 and isprime(order):
        ruler = [2*order*k + k*k%order for k in range(order)]
        d = {a-b for a in ruler for b in ruler if a > b}
        n = max(ruler) + 1
        rulers.append(tuple(ruler))
        continue

    nd = set(n-e for e in ruler)
    if not d & nd:
        ruler.append(n)
        d |= nd
        rulers.append(tuple(ruler))
    n += 1


isuniq = lambda l: len(l) == len(set(l))
isruler = lambda l: isuniq([a-b for a in l for b in l if a > b])

assert all(isruler(r) for r in rulers)

rulers = list(sorted([r for r in rulers if 50 <= len(r) <= 100], key=len))
print(sum(max(r) for r in rulers))
orlp
fonte
Não acho que essa construção seja assintoticamente ótima: ela produz uma régua de ordem pe comprimento de 2p^2Golomb, enquanto existem réguas de ordem ne comprimento de Golomb sobre n^2assintoticamente.
Greg Martin
@GregMartin Assimptoticamente, não há diferença entre 2p^2e p^2.
orlp 25/01
Depende da sua definição de "assintoticamente", eu acho, mas para mim, nesse contexto, são muito diferentes.
Greg Martin
3

Mathematica, pontuação 276235/734078 <0,376302

ruzsa[p_, i_] := Module[{g = PrimitiveRoot[p]},
  Table[ChineseRemainder[{t, i PowerMod[g, t, p]}, {p - 1, p}], {t, 1, p - 1}] ]

reducedResidues[m_] := Select[Range@m, CoprimeQ[m, #] &]

rotate[set_, m_] := Mod[set - #, m] & /@ set

scaledRuzsa[p_] := Union @@ Table[ Sort@Mod[a b, p (p - 1)],
  {a, reducedResidues[p (p - 1)]}, {b, rotate[ruzsa[p, 1], p (p - 1)]}]

manyRuzsaSets = Join @@ Table[scaledRuzsa[Prime[n]], {n, 32}];

tryGolomb[set_, k_] := If[Length[set] < k, Nothing, Take[set, k]]

Table[First@MinimalBy[tryGolomb[#, k] & /@ manyRuzsaSets, Max], {k, 50, 100}]

A função ruzsaimplementa a construção de uma régua Golobm (também chamada de conjunto Sidon) encontrada em Imre Z. Ruzsa. Resolvendo uma equação linear em um conjunto de números inteiros. I. Acta Arith., 65 (3): 259-282, 1993 . Dada qualquer primo p, essa construção produz uma régua de Golomb com p-1elementos contidos no módulo inteirop(p-1) (que é uma condição ainda mais forte do que ser uma régua de Golomb nos próprios inteiros).

Outra vantagem de trabalhar no módulo de números inteiros mé que qualquer régua de Golomb pode ser girada (a mesma constante adicionada a todos os elementos do módulo m) e dimensionada (todos os elementos multiplicados pela mesma constante, desde que essa constante seja relativamente privilegiada m), e o resultado ainda é um governante de Golomb; Às vezes, o maior número inteiro diminui significativamente ao fazer isso. Então a funçãoscaledRuzsa tenta todas essas escalas e registra os resultados.manyRuzsaSetscontém os resultados dessa construção e dimensionamento para todos os primeiros 32 primos (escolhidos um pouco arbitrariamente, mas o 32º primo, 131, é bem maior que 100); existem quase 57.000 governantes de Golomb neste conjunto, o que leva alguns minutos para ser computado.

Obviamente, os primeiros kelementos de uma régua de Golomb formam eles mesmos uma régua de Golomb. Portanto, a função tryGolombanalisa uma régua feita com qualquer um dos conjuntos computados acima. A última linha Table...seleciona a melhor régua de Golomb que puder, de todas as ordens de 50até 100, de todas as réguas de Golomb encontradas dessa maneira.

Os comprimentos encontrados foram:

{2241, 2325, 2399, 2578, 2640, 2762, 2833, 2961, 3071, 3151, 3194, 3480, 3533, 3612, 3775, 3917, 4038, 4150, 4237, 4368, 4481, 4563, 4729, 4974, 5111, 5155, 5297, 5504, 5583, 5707, 5839, 6077, 6229, 6480, 6611, 6672, 6913, 6946, 7025, 7694, 7757, 7812, 7969, 8139, 8346, 8407, 8678, 8693, 9028, 9215, 9336}

Eu originalmente combinaria isso com duas outras construções, as de Singer e de Bose; mas parece que a resposta de Peter Taylor já implementou isso, então presumivelmente eu simplesmente recuperaria esses comprimentos.

Greg Martin
fonte
Estou confuso com sua afirmação de que, trabalhando no módulo inteiro, mvocê pode girar / escalar livremente. Veja o [0, 1, 4, 6]mod 7. Se eu adicionar 1, obtemos [0, 1, 2, 5], que não é uma régua de Golomb.
orlp 25/01
Isso porque você precisa começar com uma régua Golomb mod-7 para que ela funcione. [0, 1, 4, 6]não é uma régua Golomb mod-7 porque 1 – 0é igual ao 0 – 6módulo 7, por exemplo.
Greg Martin
1
Enquanto escrevia e depurava minha implementação de campo finito em C #, desejava conhecer melhor o Mathematica. Definitivamente, um dos idiomas certos para o trabalho.
Peter Taylor