Introdução
Sua tarefa é gerar os primeiros 1000 termos na representação de fração contínua da soma digitada da raiz quadrada de 2 e raiz quadrada de 3.
Em outras palavras, produza exatamente a seguinte lista (mas o formato de saída é flexível)
[2, 6, 1, 5, 7, 2, 4, 4, 1, 11, 68, 17, 1, 19, 5, 6, 1, 5, 3, 2, 1, 2, 3, 21, 1, 2, 1, 2, 2, 9, 8, 1, 1, 1, 1, 6, 2, 1, 4, 1, 1, 2, 3, 7, 1, 4, 1, 7, 1, 1, 4, 22, 1, 1, 3, 1, 2, 1, 1, 1, 7, 2, 7, 2, 1, 3, 14, 1, 4, 1, 1, 1, 15, 1, 91, 3, 1, 1, 1, 8, 6, 1, 1, 1, 1, 3, 1, 2, 58, 1, 8, 1, 5, 2, 5, 2, 1, 1, 7, 2, 3, 3, 22, 5, 3, 3, 1, 9, 1, 2, 2, 1, 7, 5, 2, 3, 10, 2, 3, 3, 4, 94, 211, 3, 2, 173, 2, 1, 2, 1, 14, 4, 1, 11, 6, 1, 4, 1, 1, 62330, 1, 17, 1, 5, 2, 5, 5, 1, 9, 3, 1, 2, 1, 5, 1, 1, 1, 11, 8, 5, 12, 3, 2, 1, 8, 6, 1, 3, 1, 3, 1, 2, 1, 78, 1, 3, 2, 442, 1, 7, 3, 1, 2, 3, 1, 3, 2, 9, 1, 6, 1, 2, 2, 2, 5, 2, 1, 1, 1, 6, 2, 3, 3, 2, 2, 5, 2, 2, 1, 2, 1, 1, 9, 4, 4, 1, 3, 1, 1, 1, 1, 5, 1, 1, 4, 12, 1, 1, 1, 4, 2, 15, 1, 2, 1, 3, 2, 2, 3, 2, 1, 1, 13, 11, 1, 23, 1, 1, 1, 13, 4, 1, 11, 1, 1, 2, 3, 14, 1, 774, 1, 3, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 8, 1, 3, 10, 2, 7, 2, 2, 1, 1, 1, 2, 2, 1, 11, 1, 2, 5, 1, 4, 1, 4, 1, 16, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 22, 3, 1, 8, 1, 1, 1, 1, 1, 9, 1, 1, 4, 1, 2, 1, 2, 3, 5, 1, 3, 1, 77, 1, 7, 1, 1, 1, 1, 2, 1, 1, 27, 16, 2, 1, 10, 1, 1, 5, 1, 6, 2, 1, 4, 14, 33, 1, 2, 1, 1, 1, 2, 1, 1, 1, 29, 2, 5, 3, 7, 1, 471, 1, 50, 5, 3, 1, 1, 3, 1, 3, 36, 15, 1, 29, 2, 1, 2, 9, 5, 1, 2, 1, 1, 1, 1, 2, 15, 1, 22, 1, 1, 2, 7, 1, 5, 9, 3, 1, 3, 2, 2, 1, 8, 3, 1, 2, 4, 1, 2, 6, 1, 6, 1, 1, 1, 1, 1, 5, 7, 64, 2, 1, 1, 1, 1, 120, 1, 4, 2, 7, 3, 5, 1, 1, 7, 1, 3, 2, 3, 13, 2, 2, 2, 1, 43, 2, 3, 3, 1, 2, 4, 14, 2, 2, 1, 22, 4, 2, 12, 1, 9, 2, 6, 10, 4, 9, 1, 2, 6, 1, 1, 1, 14, 1, 22, 1, 2, 1, 1, 1, 1, 118, 1, 16, 1, 1, 14, 2, 24, 1, 1, 2, 11, 1, 6, 2, 1, 2, 1, 1, 3, 6, 1, 2, 2, 7, 1, 12, 71, 3, 2, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 5, 5, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 2, 19, 1, 16, 2, 15, 1, 1, 3, 2, 3, 2, 4, 1, 3, 1, 1, 7, 1, 2, 2, 117, 2, 2, 8, 2, 1, 5, 1, 3, 12, 1, 10, 1, 4, 1, 1, 2, 1, 5, 2, 33, 1, 1, 1, 1, 1, 18, 1, 1, 1, 4, 236, 1, 11, 4, 1, 1, 11, 13, 1, 1, 5, 1, 3, 2, 2, 3, 3, 7, 1, 2, 8, 5, 14, 1, 1, 2, 6, 7, 1, 1, 6, 14, 22, 8, 38, 4, 6, 1, 1, 1, 1, 7, 1, 1, 20, 2, 28, 4, 1, 1, 4, 2, 2, 1, 1, 2, 3, 1, 13, 1, 2, 5, 1, 4, 1, 3, 1, 1, 2, 408, 1, 29, 1, 6, 67, 1, 6, 251, 1, 2, 1, 1, 1, 8, 13, 1, 1, 1, 15, 1, 16, 23, 12, 1, 3, 5, 20, 16, 4, 2, 1, 8, 1, 2, 2, 6, 1, 2, 4, 1, 9, 1, 7, 1, 1, 1, 64, 10, 1, 1, 2, 1, 8, 2, 1, 5, 4, 2, 5, 6, 7, 1, 2, 1, 2, 2, 1, 4, 11, 1, 1, 4, 1, 714, 6, 3, 10, 2, 1, 6, 36, 1, 1, 1, 1, 10, 2, 1, 1, 1, 3, 2, 1, 6, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 40, 1, 1, 1, 5, 1, 3, 24, 2, 1, 6, 2, 1, 1, 1, 7, 5, 2, 1, 2, 1, 6, 1, 1, 9, 1, 2, 7, 6, 2, 1, 1, 1, 2, 1, 12, 1, 20, 7, 3, 1, 10, 1, 8, 1, 3, 1, 1, 1, 1, 2, 1, 1, 6, 1, 2, 1, 5, 1, 1, 1, 5, 12, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 8, 2, 4, 1, 3, 1, 1, 1, 2, 1, 11, 3, 2, 1, 7, 18, 1, 1, 17, 1, 1, 7, 4, 6, 2, 5, 6, 4, 4, 2, 1, 6, 20, 1, 45, 5, 6, 1, 1, 3, 2, 3, 3, 19, 1, 1, 1, 1, 1, 1, 34, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 312, 2, 1, 1, 1, 3, 6, 6, 1, 2, 25, 14, 281, 4, 1, 37, 582, 3, 20, 2, 1, 1, 1, 2, 1, 3, 7, 8, 4, 1, 11, 2, 3, 183, 2, 23, 8, 72, 2, 2, 3, 8, 7, 1, 4, 1, 4, 1, 2, 2, 1, 2, 1, 8, 2, 4, 1, 2, 1, 2, 1, 1, 2, 1, 1, 10, 2, 1, 1, 5, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 2, 9]
Desafio
A seguinte introdução geral à fração continuada é retirada do desafio Simplificar uma fração continuada .
Frações continuadas são expressões que descrevem frações iterativamente. Eles podem ser representados graficamente:
Ou eles podem ser representados como uma lista de valores:
[a0, a1, a2, a3, ... an]
Esse desafio é descobrir a fração contínua da soma digitada sqrt(2)
e sqrt(3)
, a soma digitada é definida da seguinte maneira:
Pegue os dígitos na representação decimal de sqrt(2)
e sqrt(3)
e obtenha a soma dígito por dígito:
1. 4 1 4 2 1 3 5 6 2 3 ...
+ 1. 7 3 2 0 5 0 8 0 7 5 ...
= 2. 11 4 6 2 6 3 13 6 9 8 ...
Depois, mantenha apenas o último dígito da soma e compile-o de volta à representação decimal de um número real
1. 4 1 4 2 1 3 5 6 2 3 ...
+ 1. 7 3 2 0 5 0 8 0 7 5 ...
= 2. 11 4 6 2 6 3 13 6 9 8 ...
-> 2. 1 4 6 2 6 3 3 6 9 8 ...
A soma dígitos-sábio de sqrt(2)
e sqrt(3)
é, portanto 2.1462633698...
, e quando ele é expresso com fracção contínua, os primeiros valores de 1000 (ou seja, a ), obtida são os listados na secção de introdução.a0
a999
Especificações
Você pode escrever uma função ou um programa completo. Nem deve receber insumos. Em outras palavras, a função ou o programa deve funcionar corretamente, sem entradas. Não importa o que a função ou programa faz se for fornecida uma entrada não vazia.
Você deve enviar para STDOUT. Somente se o seu idioma não suportar a saída para STDOUT você deve usar o equivalente mais próximo no seu idioma.
Você não precisa manter o STDERR limpo e a interrupção do programa por erro é permitida, desde que a saída necessária seja feita no STDOUT ou em seus equivalentes.
Você pode fornecer saída através de qualquer formulário padrão .
Isso é código-golfe , o menor número de bytes vence.
Como sempre, as brechas padrão se aplicam aqui.
fonte
×⁺Ñ
não funciona. Alternativamente×Ѳ$
.Haskell 207 bytes
Não consegui encontrar uma maneira fácil de calcular a fração continuada preguiçosamente, então trabalhei também com 2000 dígitos.
fonte