encontre o padrão nesta sequência numérica de 1 e 0

10

Escreva o programa ou a função mais curta que gera esses 1000 números ou uma sequência (indexada em 0 ou 1) que começa com eles.

[0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 
 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 
 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0]
john mangual
fonte
esta é minha primeira vez postando um quebra-cabeça de código. se você tiver alguma melhoria de estilo. Avise-se me.
precisa saber é o seguinte
7
Olá John, e bem-vindo ao PPCG! Os desafios aqui precisam ter uma condição de vitória objetiva (geralmente código-golfe). Também recomendamos executar todos os desafios na sandbox antes de postar.
3
Como o objetivo desse problema parece encontrar a sequência, recomendo solicitar o código mais curto que irá gerar esses primeiros 1000 elementos corretamente.
@Mnemonic que parece certo. Meu código já é bastante curto e estou perguntando se existe um código ainda mais curto. Sinta-se livre para editar :-) ou posso simplesmente passar para sandbox
john mangual
Eu esqueço quem fez esse desafio antes. Mas foi muito bem recebido para "encontrar o padrão". Lembro-me vagamente de alguém quebrando em 50 minutos; mas as pessoas continuaram a responder mesmo depois disso.
Magic Octopus Urn

Respostas:

17

Geléia , 11 10 bytes

Guardado 1 byte graças a @Dennis

ȷḶ×⁽q£:ȷ5Ḃ

Experimente online!

Como?

Notei pela primeira vez que o padrão alterna entre as corridas de comprimento 4 e 3, pulando a etapa de comprimento-4 a cada poucas corridas. Isso me levou a procurar um número que pudesse ser dividido no índice atual e, em seguida, adotado o mod 2 e colocado no chão - ou seja, recuperando o bit menos significativo - para fornecer o bit nesse índice da série. Após muitas tentativas e erros, descobri que 3.41845faz exatamente isso, mas multiplicar por seu recíproco aproximado ( .29253) é um byte mais curto.

ȷḶ×⁽q£:ȷ5Ḃ    Main link. Arguments: none
ȷ             Yield 1e3, i.e. 1000.
 Ḷ            Lowered range; yield [0, 1, 2, ..., 999].
  ×⁽q£        Multiply each item by 29253.
      :ȷ5     Floor-divide each item by 1e5, i.e. 100000.
         Ḃ    Take each item mod 2.
ETHproductions
fonte
ah você o encontrou
Jonathan Allan
[0 ... 999] vezes cada um por 0,2925, modificação 2 e andar (eu iria andar, então, mod 2, mas equivalente)
Jonathan Allan
6
Bem, isso é bastante anticlimático, estava esperando algo mais complicado.
Nit
@ JonathanAllan Eu originalmente tentei apenas, mas aparentemente isso é apenas o mod 2 em vez do bit mais baixo, então eu adicionei o para corrigi-lo. Trocado agora
ETHproductions
11
ȷḶ×⁽q£:ȷ5Ḃfunciona, por 10 bytes.
Dennis
3

Dyalog APL , 99 83 82 bytes

a←{⍵/0 1}¨(↓3 24 3 3)
{a⊢←↓⍉↑a{⍺∘{⍵/⊂⍺}¨⍵}¨↓3 3⍴⍵}¨(9/5)∘⊤¨1386531 496098
1000⍴∊a

Experimente online!

Definitivamente, não é a solução pretendida, pois ainda possui muitos dados codificados, mas é um começo.

dzaima
fonte
3

Ruby , 34 29 26 22 bytes

$.+=184while p$./629%2

Experimente online!

Explicação rápida: isso funciona por causa do número mágico 629. Notei que a sequência começa a se repetir após o 629º elemento e tentei "melhorar" algumas respostas existentes, usando apenas matemática inteira. Descobri que o outro "número mágico" (0,29253) é na verdade 184/629.

GB
fonte
2

Gelatina , 31 bytes

Dado o padrão, provavelmente existe uma maneira ainda mais curta ...

ĖŒṙḂ
“ṁ⁽⁺ḄæI’BḤ+3żḂ$ẎÇo2Ç+3Çḣȷ¬

Experimente online!

Como?

Explora a estrutura de comprimento de execução repetida que é aparente a uma profundidade de três.

ĖŒṙḂ - Link 1, make runs of bits: list of lengths    e.g. [5,3,5,3,3]
Ė    - enumerate                      [[1,5],[2,3],[3,5],[4,3],[5,3]]
 Œṙ  - run-length decode      [1,1,1,1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5]
   Ḃ - bit (modulo by 2)      [1,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,1,1,1]

“ṁ⁽⁺ḄæI’BḤ+3żḂ$ẎÇo2Ç+3Çḣȷ¬ - Main link: no arguments
“ṁ⁽⁺ḄæI’                   - literal 234931870193324
        B                  - to binary = [1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,0]
         Ḥ                 - double    = [2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,0]
          +3               - add three = [5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,3]
              $            - last two links as a monad:
             Ḃ             -   bit     = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
            ż              -   zip     = [[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[3,1]]
               Ẏ           - tighten   = [5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,3,1]
                Ç          - call the last Link (1) as a monad
                           -           = [1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,0]
                 o2        - OR 2      = [1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,2]
                   Ç       - Link 1... = [1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0]
                    +3     - add three = [4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,3]
                      Ç    - Link 1... = [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
                        ȷ  - literal 1000
                       ḣ   - head      = [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1]
                         ¬ - NOT       = [0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0]          
Jonathan Allan
fonte
Eu nunca vi Jelly antes!
precisa saber é o seguinte
Bem-vindo ao PPCG :) - é uma linguagem de golfe escrita por um dos nossos moderadores, Dennis. Clique no cabeçalho da página git-hub, onde há um wiki.
Jonathan Allan
Eu prometo ficar melhor em fazer perguntas. Vejo que há uma caixa de areia e alguma formatação padrão.
John mangual
Essa foi minha abordagem quando comecei.
Esolanging Fruit
@EsolangingFruit Pensei que, ao fazer isso, poderia ser uma fração repetindo ... parece que 117/400!
Jonathan Allan
2

Java 8, 75 64 62 bytes

v->{for(int i=0;i<1e3;)System.out.print((int)(i++*.29253)%2);}

Imprime a sequência inteira sem delimitador para salvar bytes, porque eles serão apenas 0e de 1qualquer maneira.

Portas da geléia do @ETHproductions 'respondem , porque duvido que encontre algo mais curto ..

Experimente online.

Explicação:

v->{                     // Method with empty unused parameter and no return-type
  for(int i=0;i<1e3;)    //  Loop `i` in range [0,1000)
    System.out.print(    //   Print:
      (int)(i++*.29253)  //    `i` multiplied with 0.29253,
                         //    and then truncated of their decimal values by casting to int
      %2);}              //    Modulo-2 to result in either 0 or 1

Resposta antiga retornando a matriz resultante ( 75 bytes ):

v->{int i=1000,r[]=new int[i];for(;i-->0;)r[i]=(int)(i*.29253)%2;return r;}

Experimente online.

Explicação:

v->{                   // Method with empty unused parameter and integer-array return-type
  int i=1000,          //  Index `i`, starting at 1000
      r[]=new int[i];  //  Result-array of size 1000
  for(;i-->0;)         //  Loop `i` in range (1000,0]
    r[i]=              //   Set the item in the array at index `i` to:
      (int)(i*.29253)  //    `i` multiplied with 0.29253,
                       //    and then truncated of their decimal values by casting to int
      %2;              //    Modulo-2 to result in either 0 or 1
  return r;}           //  Return the resulting integer-array
Kevin Cruijssen
fonte
1

JavaScript (Node.js) , 41 33 bytes, porta

Obrigado Rick Hitchcock por 4+ bytes

f=i=>i>999?'':(i*.29253&1)+f(-~i)

Experimente online!

JavaScript (Node.js) , 121 bytes, original

_=>'8888y888'[s='replace'](/8/g,'aaa3yyy')[s](/y/g,'aaa3aa3')[s](/a/g,34)[s](/./g,t=>(_=+!+_+[]).repeat(t)).slice(3,1003)

Experimente online!

l4m2
fonte
Guardar 4 bytes usando recursão: f=(i=0)=>i<1e3?(i*.29253&1)+f(i+1):''
Rick Hitchcock
1

Stax , 13 11 bytes

í?♫~╘äqx-G▄

Execute e depure-o em staxlang.xyz!

Porta para Stax da resposta Jelly do @ ETHproductions (antes de sua modificação) com algumas modificações do @recursive para salvar dois bytes.

Khuldraeseth na'Barya
fonte
Você pode dobrar o denominador, manter a parte fracionária e arredondar para o número inteiro mais próximo, em vez de usar o módulo. Se não me engano, isso também dá 11
recursivo
1

Wolfram Language (Mathematica) , 96 bytes

Procurei um autômato celular que olha para os quatro vizinhos à esquerda e produz o padrão de caminhada à esquerda visto nos dados quando você particiona os dados no comprimento 7 e mantém cada terceira linha.

Esse autômato celular funcionará por 29 gerações, cada uma das quais é triplicada, correspondendo perfeitamente à sequência dos caracteres 1 a 629. No entanto, a sequência começa a se repetir no 630º caractere em vez de continuar com o padrão observado, portanto, é necessário um código extra para lidar com a repetição de o padrão truncado. Eu gero o padrão principal duas vezes para obter 1258 caracteres.

Most@Flatten[{#,#,#}&/@CellularAutomaton[{271,2,-{{4},{3},{2},{1}}},{0,0,0,0,1,1,1},29]]~Table~2

Sem essa falha, poderíamos fazê-lo em 74 bytes mais curtos. 47 é o número de gerações necessárias para obter 1.000 caracteres (na verdade, isso é 1008 = 48 * 7 * 3)

{#,#,#}&/@CellularAutomaton[{271,2,-{{4},{3},{2},{1}}},{0,0,0,0,1,1,1},47]

Experimente online!

Kelly Lowder
fonte
1

Z80Golf , 27 bytes

00000000: 018d 2b7b 1f1f e601 f630 ff09 3001 1313  ..+{.....0..0...
00000010: 7bfe 9220 ee7a fe04 20e9 76              {.. .z.. .v

Experimente online!

Traduzido deste código C:

for (n = 0; n >> 16 != 1170; n += 11149 + 65536)
    putchar('0'|n>>18&1);

Desmontagem:

  ld bc, 11149
loop:
  ld a, e
  rra
  rra
  and 1
  or '0'
  rst $38           ; putchar
  add hl, bc        ; Add 11149 to n = DEHL.
  jr nc, just_one   ; Add 65536 to n, possibly with carry from low 16 bits.
  inc de
just_one:
  inc de
  ld a, e
  cp 1170 & 255
  jr nz, loop
  ld a, d
  cp 1170 >> 8
  jr nz, loop
  halt

Essa é essencialmente uma abordagem aritmética de ponto fixo: (11149 + 65536) / 2 18 ± 0,29253, a constante usada por outras respostas.

Lynn
fonte
0

J , 17 bytes

2|<.0.29253*i.1e3

Porta AJ da resposta Jelly da ETHproduction.

Experimente online!

Galen Ivanov
fonte
0

Carvão vegetal , 13 bytes

Eφ§01×·²⁹²⁵³ι

Experimente online! Link é a versão detalhada do código. Explicação:

 φ              Predefined variable 1000
E               Map over implicit range
            ι   Current value
      ·²⁹²⁵³    Literal constant `0.29253`
     ×          Multiply
   01           Literal string `01`
  §             Cyclically index
                Implicitly print each result on its own line

Agradecemos a @ ASCII-only por permitir que a indexação aceite flutuadores que são convertidos em número inteiro (e reduzimos automaticamente o módulo 2 neste caso).

Neil
fonte
0

C, 55 53 52 bytes

f(i,j){for(i=0;j=.29253*i,i++-1e3;)putchar(j%2+48);}

Porto de Kevin Cruijssen é Java resposta . Experimente online aqui .

Obrigado ao vazt por jogar 2 bytes e a Jonathan Frech por jogar mais um.

Versão não destruída:

f(i, j) { // function taking two dummy arguments (implicitly int) and implicitly returning an unused int
    for(i = 0; j = .29253*i, i++ - 1e3; ) //  loop 1000 times, multiply i with 0.29253, truncating to an integer
        putchar(j % 2 + 48);  // modulo the truncated integer by 2, yielding 0 or 1, then convert to ASCII (48 is ASCII code for '0') and print
}
OOBalance
fonte
ié inicializado como 0, pois é global; portanto, você pode remover o i=0inicializador de loop for para salvar 3 bytes. Além disso, se você introduzir uma segunda variável (como parâmetro para f()) e atribuir i++*.29253a ela, poderá evitar a conversão e salvar outros 2 bytes: i;f(j){for(;i<1e3;)printf("%d",(j=i++*.29253)%2);} Experimente online!
precisa saber é
@vazt Sim, ié inicializado com 0 no início, mas se quisermos chamar essa função mais de uma vez, isso não será suficiente. Usar jpara evitar o elenco é um ótimo golfe, obrigado.
OOBalance
52 bytes .
22818 Jonathan Frech
0

/// , 63 bytes

/b/000111//A/b1b//B/b0b//C/0BA1//X/CACACACA0bCBCBCB/0bXXCBXCAC0

Experimente online!

Erik, o Outgolfer
fonte