Vamos desenhar a bandeira do Nepal

28

A bandeira do Nepal ( Wikipedia , Numberphile ) parece muito diferente de qualquer outra. Ele também possui instruções de desenho específicas (incluídas no artigo da Wikipedia). Quero que vocês façam um programa que desenhe a bandeira do Nepal.

O usuário insere a altura solicitada da bandeira (de 100 a 10000 pixels) e o programa emite a bandeira do Nepal. Você pode escolher qualquer maneira de desenhar a bandeira: tudo, desde arte ASCII até OpenGL.

Este é um concurso de popularidade; portanto, o vencedor será a resposta mais votada em 1º de fevereiro. Portanto, não se preocupe com o tamanho do código, mas lembre-se de que códigos mais curtos podem receber mais votos positivos.

Há apenas um requisito: você não tem permissão para usar recursos da Web.

Diverta-se :)

imagem da bandeira do Nepal from Wikimedia Commons

ST3
fonte
1
Deja vu! Além disso, quantas linhas de texto ASCII estão em 100px?
Kendall Frey
@KendallFrey Bem, a arte ASCII é uma das maneiras de resolver isso, mas não há resposta para sua pergunta. como depende do tamanho da fonte e do espaçamento entre linhas, o provedor de respostas deve contar sozinho.
ST3 16/01
1
Nesse caso, certamente print("|\\\n|\\")é uma solução válida. Eu acho que você precisa ser mais específico sobre as regras para entradas não-bitmap.
Kendall Frey
5
Por favor, não apague e repense sua pergunta. Há edição por um motivo ... também, não há link na sua nova pergunta.
Maçaneta
1
Além disso, em vez de proibir recursos da Internet, por que não exigir que o sinalizador seja realmente desenhado (ou seja, criado pelo código)?
Justin

Respostas:

18

SVG, 1375, 1262, 1036, 999, 943939

<svg>
<defs>
<style>.w{fill:white}</style>
<g id="f"><path d="M1,1L1,20L18,20L6,10L17,10z" style="stroke:#003893;fill:#dc143c"/></g>
<g id="m"><polygon points="1,0 -.5,.86 -.5,-.86"/></g>
<g id="b"><polygon points="1,0 -.5,.86 -.5,-.86"/><polygon points="1,0 -.5,.86 -.5,-.86"transform="rotate(32)"/></g>
<g id="t"><use xlink:href="#b"/><use xlink:href="#b"transform="rotate(60)"/></g>
<g id="s">
<use xlink:href="#m"/>
<use xlink:href="#m"transform="rotate(20)"/>
<use xlink:href="#m"transform="rotate(45)"/>
<use xlink:href="#m"transform="rotate(70)"/>
<use xlink:href="#m"transform="rotate(90)"/>
</g>
</defs>
<g transform="scale(.7)">
<use xlink:href="#f" x="5" y="6"transform="scale(19,23)"/>
<use xlink:href="#t" x="2.8" y="7"class="w"transform="scale(70)"/>
<path d="M157,292 A 40,35 0 1 0 237,292 43,45 0 1 1 157,292z"class="w"/>
<use xlink:href="#s" x="5.6" y="8.9"class="w"transform="scale(35)"/>
</g>
</svg>

Renderização do Chrome

O SVG não possui realmente a entrada do usuário, AFAIK, para que você possa alterar a escala modificando esta linha:

<g transform="scale(.7)">

Gabriele D'Antona
fonte
Deve haver exatamente 8 triângulos na lua e 12 no sol. Mas você tem 11 e 15 anos.
Victor Stafusa
deve ser consertado.
Gabriele D'Antona
2
Possui entrada do usuário. Pressionando CTRL + + ou CTRL + - o usuário pode alterar a escala em muitos navegadores da web.
precisa saber é o seguinte
Isso tem 918 bytes (você pode usar as terminações de linha do Unix em vez do Windows para salvar um byte por quebra de linha). E enquanto estamos nesse tópico, você pode simplesmente eliminar totalmente as quebras de linha para chegar a 897. Mas isso não se processa no IE, Chrome, Firefox ou Inkscape para mim. Pelo menos não como um SVG independente. Somente quando incorporado em HTML (mas isso leva a 960 bytes). A correção dos erros de XML leva o arquivo a 1008 bytes. Vou jogar um pouco.
Joey
hypftier.de/temp/svg.7z é um repositório do Mercurial com as alterações que fiz. Você pode inspecionar as mensagens com mais facilidade hg log --style=changelog -r 0..tip. Eu poderia fazer uma redação mais detalhada das técnicas que usei lá.
Joey
27

JavaScript, 569 537 495 442 caracteres (ASCII)

h="";M=Math;Z=M.max;Y=M.min;function d(a,b,r,s,t){n=M.sqrt(a*a+e*e);return n-(r+M.abs((M.atan2(a,e
)/M.PI*b+t)%1-0.5)*s*n)}f=parseInt(prompt(),10);for(g=0;g<f;g++){for(k=0;k<2*f;k++)e=k/(0.5*f)-0.8
,q=g/(0.25*f),u=q-1.08,v=q-1.29,z=e*e+u*u-0.3364,E=Z(-e-0.8,Y(Z(0.62*e+0.8-q,-2.06+q),Z(1*e+0.8+
0.85-q,-3.87+q))),p=0>Y(d(q-2.91,6,0.38,0.7,10),Y(Z(e*e+v*v-0.3025,-z),Z(d(q-1.54,8,0.25,0.6,10.5)
,q-1.7)))?" ":-0.13>E?";":0>=E?"8":"",h+=p;h+="\n"}h 

Para executar: copiar e colar no console do navegador (por exemplo: ferramentas de desenvolvedor do Chrome ou Firebug)

Resultado:

8 
8888 
8888888 
8888;88888 
8888;;;;88888 
8888;;;;;;;888888 
8888;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;; ;  ;  ; ;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;; ;;;;;               ;;;;; ;;;;;;;;;;;;;;;;88888 
8888;;;  ;;;;;;           ;;;;;;  ;;;;;;;;;;;;;;;;;;;888888 
8888;;;;   ;;;             ;;;   ;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;               ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;8888888888888888888888888888888888888888888888888888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;888 
8888;;;;;;;;;   ;;;   ;;;   ;;;;;;;;;;888 
8888;;;;;;;;;;             ;;;;;;;;;;;;;888 
8888;;;;                         ;;;;;;;;;888 
8888;;;;;;                     ;;;;;;;;;;;;;888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;888 
8888;;;                           ;;;;;;;;;;;;;;888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;; ;;;;;             ;;;;; ;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;               ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;  ;;;;   ;;;;  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888888888888888888888888888888888888888888888888888888888888888888888888 
888888888888888888888888888888888888888888888888888888888888888888888888888 

EDIT: altura adicionada como entrada do usuário, conforme sugerido pelo ST3. funciona melhor com grandes valores (por exemplo: 120)

tigrou
fonte
Bem, parece bom, mas onde está a entrada do usuário? É um dos requisitos.
ST3
Eu não sabia disso (ou pelo menos não o li :)). Eu atualizei a resposta.
tigrou
Sua lua possui 6 triângulos. Deveria ter 8. Além disso, ele travou meu navegador por grandes valores.
Victor Stafusa
Revisitei o código inteiro. Agora a renderização está mais próxima do sinalizador original e fica melhor, especialmente para valores de baixa altura (por exemplo: 20 pixels). A lua foi corrigida e tem o número certo de triângulos (a estrela estava muito baixa para ver todos eles). O valor da altura recomendado é "100".
usar o seguinte
Submissão excelente louca.
Devon Parsons
23

Mathematica

Constituição provisória do Nepal - Anexo 1 (referente ao artigo 6), pp. 260 e 262, fornece 25 instruções detalhadas sobre como construir a bandeira. (consulte http://www.ccd.org.np/resources/interim.pdf ). Os números nos comentários se referem às instruções correspondentes na constituição.

Vamos precisar de funções para desenhar triângulos equilaterais e determinar a distância de um ponto a uma linha:

ClearAll[triangle]
triangle[a_?NumericQ,b_?NumericQ,c_?NumericQ,labeled_:True]:=
Block[{x,y,pt,sqr},sqr=#.#&;
pt[a1_,b1_,c1_]:=Reduce[sqr[{x,y}]==b1^2&&sqr[{x,y}-{a1,0}]==c1^2&&y>0,{x,y}];
{(
(*Polygon[{{0,0},{a,0},{x,y}}]*)
Polygon[{{-a/2(*0*),0},{a/2,0},{x-a/2,y}}]),
If[labeled,
{Text[Style[Framed[a,Background->LightYellow],11],{a/2,0}],
Text[Style[Framed[b,Background->LightYellow],11],{x/2,y/2}],
Text[Style[Framed[c,Background->LightYellow],11],{(a+x)/2,y/2}]},{}]}/.ToRules[pt[a,b,c]]]

(*distance from point to a line *)
dist[line_,{x0_,y0_}]:=(Abs[a x0+b y0+c]/.{x0-> m[[1]],y0-> m[[2]]})/Sqrt[a^2+b^2]; (* used below *)

O código restante, com números referentes às instruções. De longe, a parte mais desafiadora é fazer os raios para a lua e o sol. GeometricalTransformationé útil para fazer traduções e rotações.

    (*shape inside flag*)
(*1*)
w=100;a={0,0};b={w,0};
lAB=Line[{a,b}];
tA=Text["A",Offset[{-10,-20},a]];
tB=Text["B",Offset[{20,-20},b]];

(*2*)
c={0,w 4/3};d={0,w};
lAC=Line[{a,c}];
tC=Text["C",Offset[{-10,20},c]];
lAD=Line[{a,d}];
tD=Text["D",Offset[{-10,0},d]];
lBD=Line[{b,d}];

(*3*)
e=Solve[(x-w)^2+y^2==(w)^2&&y==w-x,{x,y}][[1,All,2]];
tE=Text["E",Offset[{15,0},e]];

(*4*)
f={0,e[[2]]};tF=Text["F",Offset[{-10,0},f]];
g={w,e[[2]]};tG=Text["G",Offset[{15,0},g]];
lFG=Line[{f,g}];
poly={a,b,e,g,c};

(*5*)lCG= Line[{c,g}];

(*moon*)
(*6*)
lineCG=N[((f[[2]]-c[[2]])/w)x+c[[2]](*100*)];
h={w/4,0};tH=Text["H",Offset[{0,-20},h]];
i={h[[1]],lineCG/.x->h[[1]]};tI=Text["I",Offset[{10,0},i]];
lHI={Dashed, LightGray,Line[{h,i}]};

(*7*)
j={0,f[[2]]+(c[[2]]-f[[2]])/2};tJ=Text["J",Offset[{-10,10},j]];
lineJG=N[((f[[2]]-j[[2]])/g[[1]])x+j[[2]]];
k={Solve[lineCG==j[[2]],x][[1,1,2]],j[[2]]};tK=Text["K",Offset[{10,10},k]];
(*k={Solve[lineCG\[Equal]c[[2]],x][[1,1,2]],j[[2]]};tK=Text["K",Offset[{10,10},k]];*)
lJK={Dashed, LightGray,Line[{j,k}]};

(*8*)l={i[[1]],j[[2]]};tL=Text["L",Offset[{0,10},l]];
(*9*)lJG={LightGray,Dashed,Line[{j,g}]};
(*10*)m={h[[1]],(lineJG/.x-> h[[1]])};tM=Text["M",Offset[{0,10},m]];
(*11*)distMfromBD=dist[{1,1,-w(*100*)},m];
 n={i[[1]],m[[2]]-distMfromBD};tN=Text["N",Offset[{0,0},n]];
(*ln=Abs[l[[2]]-n[[2]]];*)
(*12*)o={0,m[[2]]};tO=Text["O",Offset[{-10,0},o]];
lM={Dashed,LightGray,Line[{o,{g[[1]],o[[2]]}}]};

(*13*)
radiusLN=l[[2]]-n[[2]];
p={m[[1]]-radiusLN,m[[2]]};tP=Text["P",Offset[{0,10},p]];
q={m[[1]]+radiusLN,m[[2]]};tQ=Text["Q",Offset[{0,10},q]];
moonUpperEdge={White,Circle[l,radiusLN,{Pi,2 Pi}]};
moonLowerEdge={White,Circle[m,radiusMQ,{Pi,2 Pi}]};


(*14*)radiusMQ=q[[1]]-m[[1]];


(*15*)radiusNM=m[[2]]-n[[2]];
arc={Yellow,Circle[n,radiusNM,{Pi/7,6 Pi/7}]};
{r,s}=Solve[(x-l[[1]])^2+(y-l[[2]])^2==(radiusLN)^2 &&(x-n[[1]])^2+(y-n[[2]])^2==(radiusNM)^2,{x,y}][[All,All,2]];
tR=Text["R",Offset[{0,0},r]];
tS=Text["S",Offset[{0,0},s]];
t={h[[1]],r[[2]]};
tT={Black,Text["T",Offset[{0,0},t]]};


(*16*)radiusTS=Abs[t[[1]]-s[[1]]];
(*17*)radiusTM=Abs[t[[2]]-m[[2]]];

(*18 triangles*)
t2=Table[GeometricTransformation[GeometricTransformation[triangle[4,4,4,False][[1]],RotationTransform[k Pi/8]],{TranslationTransform[t]}],{k,-4,3}];
midRadius=(Abs[radiusTM+radiusTS]/2-2);
pos=1;table2=GeometricTransformation[t2[[pos++]],{TranslationTransform[#]}]&/@Table[midRadius {Cos@t,Sin[t]},{t,Pi/16,15 Pi/16,\[Pi]/8}];

(*19 sun*)u={0,f[[2]]/2};tU=Text["U",Offset[{-10,0},u]];
lineBD=N[(d[[2]]/w)x+d[[2]]];
v={-Solve[lineBD==u[[2]],x][[1,1,2]],u[[2]]};tV=Text["V",Offset[{10,0},v]];
lUV={LightGray,Dashed,Line[{u,v}]};

(*20*)w={h[[1]],u[[2]]};tW={Black,Text["W",Offset[{0,0},w]]};
(*21*)
(*22*)

t3=Table[GeometricTransformation[GeometricTransformation[triangle[9,9,9,False][[1]],RotationTransform[k Pi/6]],{TranslationTransform[w]}],{k,-3,9}];
midRadius3=(Abs[radiusTM+radiusTS]/2+2.5);
pos=1;
table3=GeometricTransformation[t3[[pos++]],{TranslationTransform[#]}]&/@Table[midRadius3 {Cos@t,Sin[t]},{t,0,2 Pi,2\[Pi]/12}];



Show[
Graphics[{Gray,
(*1*)lAB,tA,tB,
(*2*)lAC,tC,lAD,tD,lBD,
(*3*)tE,
(*4*)tF,lFG,tG,{Red,Opacity[.4],Polygon[poly]},
(*5*)lCG,
(*6*)tH,lCG,tI,lHI,
(*7*)tJ,lJK,tK,
(*8*)tL,
(*9*)lJG,
(*10*)tM,
(*11*)tN,
(*12*)lM,tO,
(*13*)moonUpperEdge,tP,tQ,
(*14*)moonLowerEdge,
(*15*)arc,tR,tS,tT,
(*16*){White,Dashed,Circle[t,radiusTS(*,{0, Pi}*)]},

(*17*){White,Opacity[.5],Disk[t,radiusTM,{0, 2 Pi}]},
(*18 triangles*){White,(*EdgeForm[Black],*)table2},
(*19 sun*)tU,tV,lUV,

(*20*)tW,{Opacity[.5],White,Disk[w,Abs[m[[2]]-n[[2]]]]},
(*21*)Circle[w,Abs[l[[2]]-n[[2]]]],
(*22*){Black(*White*),EdgeForm[Black],triangle[4,4,4,False](*table3*)},
{White,(*EdgeForm[Black],*)table3},

(*23*)
{Darker@Blue,Thickness[.03],Line[{a,b,e,g,c,a}]}

},
Ticks-> None(*{{0,100},{0,80,120,130}}*), BaseStyle-> 16,AspectRatio-> 1.3,Axes-> True],

(*cresent moon*)
RegionPlot[{(x-25)^2+(y-94.19)^2<21.4^2&&(x-25)^2+(y-102.02)^2>21.4^2},{x,0,100},{y,30,130},PlotStyle->{Red,White}]]

A bandeira a seguir, do código acima, é feita de acordo com as instruções na constituição.

As cores são modificadas para facilitar a visualização das linhas de construção. As letras referem-se a pontos e linhas nas instruções.

construção de bandeira


A propósito, bandeiras do mundo podem ser chamadas diretamente no Mathematica. Por exemplo:

Graphics[CountryData["Nepal", "Flag"][[1]], ImageSize->{Automatic,200}]

Nepal

DavidC
fonte
1
uhm, isso é como fazer batota ...
Gabriele D'Antona
friol, Sim, eu concordo. Por isso incluí uma variação.
DavidC
1
Na IMO, isso não viola a regra, pois não há recursos sendo carregados da Web diretamente.
Tyzoid
2
O Mathematica sempre permite maneiras de trapacear.
ST3
13
@ ST3 Mathematica é a trapaça.
Oberon
9

Python

import turtle, sys
from math import sqrt, sin, cos, pi

height = int(sys.argv[1])
width = height / 4 * 3
turtle.screensize(width, height)
t = turtle.Turtle()

# the layout
t.pencolor("#0044cc")
t.fillcolor("#cc2244")
t.pensize(width / 25)
t.pendown()
t.fill(True)
t.forward(width)
t.left(135)
t.forward(width)
t.right(135)
t.forward(width / sqrt(2))
t.right(90)
t.goto(0, height)
t.forward(height)
t.fill(False)
t.penup()

# the bottom star
t.fillcolor("#ffffff")
t.pencolor("#ffffff")
t.pensize(1)
radius = width / 5
x = width / 4
y = height / 4
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(24):
    t.goto(x + radius * (5 + (-1) ** i) / 6 * cos(i * pi / 12), y + radius * (5 + (-1) ** i) / 6 * sin(i * pi / 12))
t.fill(False)
t.penup()

# the top star
radius = width / 9
x = width / 4
y = height * 2 / 3
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(28):
    t.goto(x + radius * (6 + (-1) ** i) / 7 * cos(i * pi / 14), y + radius * (6 + (-1) ** i) / 7 * sin(i * pi / 14))
t.fill(False)
t.penup()

# the moon
radius = width / 5
x = width / 4
y = height / sqrt(2)
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(30):
    t.goto(x + radius * cos(i * pi / 30), y - radius * sin(i * pi / 30))
for i in range(30):
    t.goto(x - radius * cos(i * pi / 30), y - radius / 2 * sin(i * pi / 30))
t.fill(False)
t.penup()
t.hideturtle()

raw_input("press enter")

Usa as tartarugas Tk do python, exemplo python nepal.py 150e python nepal.py 200respectivamente:

imagem

mniip
fonte
Você pode escrever o número de caracteres em seu código fonte?
Gabriele D'Antona
Por quê? é este código-golfe ?
Mniip
A Lua deve apresentar exatamente 8 triângulos. O seu tem 9 anos e meio.
Victor Stafusa
@Victor Fixed. Não percebeu que é uma exigência estrita
mniip
5

R (não vamos falar sobre comprimento )

nepaliflag = function(imaginary = FALSE, color = c("red", "white", "blue")){
    #Draws flag of Nepal with default colors red for inner area, white for Sun and Moon,
    #and blue for outer border
    #Based on instructions from http://www.servat.unibe.ch/icl/np01000_.html
    #Coded by Darshan Baral, with help from Urja Acharya
    #Fork at https://github.com/darshanbaral/R_codes/blob/master/nepali_flag.r
    graphics.off()
    windows(width = 6, height = 8)
    par(mar = c(3, 0.5, 2, 0.5))
    fs = 1 #Arbitrary scale unit for flag
    plot(fs, fs, xlim = c(0, fs), ylim = c(0, 1.5*fs),
         type = "p", pch = NA, axes = FALSE,
         xlab = "", ylab = "",
         asp = 1)

    title(main = "Flag of Nepal")

    #Perpendicular distance from a to bc
    dist_point_line <- function(a, b, c) {
        v1 <- b - c
        v2 <- a - b
        m <- cbind(v1,v2)
        return(abs(det(m))/sqrt(sum(v1*v1)))
    }

    #Distance from a to b
    dist_2_points <- function(a, b) {
        return(sqrt((a[1]-b[1])^2+(a[2]-b[2])^2))
    }

    #Intersection between lines ab and mn
    lines_intersection = function(a,b,m,n){
        A1 = b[2] - a[2]
        B1 = a[1] - b[1]
        C1 = a[1]*b[2] - a[2]*b[1]

        A2 = n[2] - m[2]
        B2 = m[1] - n[1]
        C2 = m[1]*n[2] - m[2]*n[1]      

        Delta = A1*B2 - A2*B1
        if(Delta == 0){
            return("Lines are parallel")
        } else {
            x = (B2*C1 - B1*C2)/Delta
            y = (A1*C2 - A2*C1)/Delta
            return(c(x,y))
        }
    }

    A = c(0,0)
    B = c(fs, 0)
    C = c(0, 4*B[1]/3)
    D = c(0, B[1])
    E = c( (B[1] - B[1]/sqrt(2)), B[1]/sqrt(2) )
    tE = c(E[1], A[2]) #Projecting E onto x-axis
    F = c(0, E[2] )
    G = c(B[1], E[2] )

    F_C = dist_2_points(F,C) #Distance between points F and C
    F_G = dist_2_points(F,G)
    B_tE = dist_2_points(B,tE)
    E_tE = dist_2_points(E,tE)

    upper_angle = pi/2 - atan(F_C/F_G) #Corner angle of upper triangle
    lower_angle = pi/2 - atan(E_tE/B_tE) #Corner angle of bottom triangle

    H = c(B[1]/4,0)
    I = c(H[1], G[2]+(G[1]-H[1])*(C[2]-F[2])/G[1] )
    J = c(0, 0.5*(C[2] + F[2]) )
    K = c( (C[2]-J[2])*G[1]/(C[2]-F[2]), J[2])
    L = c(H[1],J[2])
    M = lines_intersection(J, G, H, I)
    M_BD = dist_point_line(M, B, D) #Perpendicular distance between point M and line BD
    N = c(H[1], M[2]-M_BD)
    O = c(0, M[2])
    L_N = dist_2_points(L, N)
    L_M = dist_2_points(L, M)
    P = c(M[1] - sqrt(L_N^2 - L_M^2), M[2])
    Q = c(M[1] + sqrt(L_N^2 - L_M^2), M[2])
    L_Q = dist_2_points(L, Q)
    M_Q = dist_2_points(M, Q)
    M_N = dist_2_points(M, N)

    #Points of intersection of two circles
    temp_1 = (L_Q^2 - M_N^2 + M_N^2 ) / (2 * M_N)
    temp_2 = sqrt(L_Q^2 - temp_1^2)

    R = c(N[1]-temp_2, L[2]-temp_1)
    S = c(N[1]+temp_2, L[2]-temp_1)
    T = c(H[1], R[2])
    T_N = dist_2_points(T, N)
    T_S = dist_2_points(T, S)
    T_M = dist_2_points(T, M)

    U = c(A[1], 0.5 * (A[2]+F[2]))
    temp_U = c(H[1],U[2])
    V = lines_intersection(U, temp_U, B, E)
    W = c(H[1], U[2])

    #Draw inner polygon in red
    area = rbind(G, C, A, B, E)    
    polygon(area, col = color[1], border = NA)

    #Draw Moon arcs
    symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, fg = NA, bg = color[2])
    symbols (x = M[1], y = M[2], circles=c(M_Q), add =TRUE, inches=FALSE, fg = NA, bg = color[2])
    symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, fg = NA, bg = color[1])
    symbols (x = T[1], y = T[2], circles=c(T_M), add =TRUE, inches=FALSE, bg = color[2], fg = NA)

    #Draw Sun circles
    symbols (x = W[1], y = W[2], circles=c(M_N), add =TRUE, fg = NA, inches=FALSE, bg = NA)

    #Obtain points of triangles of the Sun
    sun_points = c(0,0)
    theta = 0
    for (i in 1:24){
        if (i %% 2 != 0){
            sun_points = rbind( sun_points, c( W[1]+L_N*cos(theta), W[2]+L_N*sin(theta)) )
        } else {
            sun_points = rbind( sun_points, c( W[1]+M_N*cos(theta), W[2]+M_N*sin(theta)) )
        }
        theta = theta + 2*pi/24
    }
    sun_points = sun_points[2:25,]

    #Obtain points of triangles of the Moon
    moon_points = c(0,0)
    theta = 0 - pi/8
    for (i in 1:20){
        if (i %% 2 != 0){
            moon_points = rbind( moon_points, c( T[1]+T_M*cos(theta), T[2]+T_M*sin(theta)) )
        } else {
            moon_points = rbind( moon_points, c( T[1]+T_S*cos(theta), T[2]+T_S*sin(theta)) )
        }
        theta = theta + pi/16
    }
    moon_points = moon_points[2:21,]

    par(xpd = TRUE)

    Ax = c(A[1] - T_N, A[2]) #Shift A to the left with a distance of TN
    Cx = c(C[1] - T_N, C[2])
    Ay = c(A[1], A[2] - T_N)
    By = c(B[1], B[2] - T_N) #Shift B to the bottom with a distance of TN

    Gx = c(G[1] + T_N, G[2])
    Gy = c(G[1], G[2] - T_N)
    Ey = c(E[1], E[2] - T_N)

    Kx = c(K[1] + T_N/cos(upper_angle), K[2]) #a point on parallel line TN away from upper slanting line
    Ix = c(I[1] + T_N/cos(upper_angle), I[2]) #another point on parallel line TN away from upper slanting line

    Bb = c(B[1] + T_N/cos(lower_angle), B[2]) #a point on parallel line TN away from lower slanting line
    Ee = c(E[1] + T_N/cos(lower_angle), E[2]) #another point on parallel line TN away from lower slanting line

    #Point of intersection for offsetting borders in corners
    Ap = lines_intersection(Ax, Cx, Ay, By) 
    Cp = lines_intersection(Kx, Ix, Ax, Cx)
    Gp = lines_intersection(Ix, Kx, Ey, Gy)
    Ep = lines_intersection(Bb, Ee, Ey, Gy)
    Bp = lines_intersection(Ay, By, Ee, Bb)

    #Draw triangles for Sun and Moon
    polygon(sun_points, col = color[2], border = NA)    
    polygon(moon_points, col = color[2], border = NA)   

    #Draw outer border
    borders = rbind(B, Bp, Ap, Cp, Gp, Ep, Bp, B, A, C, G, E, B)                
    polygon(borders, col=color[3], border = NA)

    #Draw white polygon on outside of upper triangle to get rid of part of initial circle
    outer_white = rbind(Cp,Gp,c(Gp[1],Cp[2]))
    polygon(outer_white,col = "white", border = NA)

    #Draw grids, cirlces, and points if imaginary is TRUE
    if (imaginary == TRUE){
        main_points = rbind(A, B, C, D, E, F, G, H, I, J, K, L, M, N, 
                            O, P, Q, R, S, T, U, V, W)  
        points(main_points, pch = 19, cex = 0.5)
        text(main_points, c("A", "B", "C", "D", "E", "F", "G", "H", "I",
                            "J", "K", "L", "M", "N", "O", "P", "Q", "R",
                            "S", "T", "U", "V", "W"), pos = 3, font =2)
        lines(rbind(H,I), lty = 2)
        lines(rbind(J,G), lty = 2)
        lines(rbind(J,K), lty = 2)
        lines(rbind(U,V), lty = 2)

        #Draw Moon arcs
        symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = M[1], y = M[2], circles=c(M_Q), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = N[1], y = N[2], circles=c(M_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = T[1], y = T[2], circles=c(T_S), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = T[1], y = T[2], circles=c(T_M), add =TRUE, inches=FALSE, bg = NA)

        #Draw Sun circles
        symbols (x = W[1], y = W[2], circles=c(M_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = W[1], y = W[2], circles=c(L_N), add =TRUE, inches=FALSE, bg = NA)          
    }
}

insira a descrição da imagem aqui

db
fonte
4

Python (+ PIL), 578

Porque eu estou muito entediado hoje ..

from PIL import Image,ImageDraw
from math import*
I,k,l,m,n,o,_=Image.new('P',(394,480)),479,180,465,232,347,255;D=ImageDraw.Draw(I);P,G=D.polygon,D.pieslice
I.putpalette([_,_,_,0,0,_,_,20,60])
def S(x,y,r,e,l,b):
 p,a,h=[],2*pi/e,r*l;c,d=[0,-a/2][b],[a/2,0][b]
 for i in range(e):p+=[(x+r*cos(i*a+c),y+r*sin(i*a+c)),(x+h*cos(i*a+d),y+h*sin(i*a+d))]
 P(p,fill=0)
P([(0,0),(393,246),(144,246),(375,k),(0,k)],fill=1)
P([(14,25),(o,n),(110,n),(o,m),(14,m)],fill=2)
S(96,o,68,12,.6,0)
G([(31,90),(163,221)],0,l,fill=0)
G([(28,68),(166,200)],0,l,fill=2)
S(96,178,40,16,.7,1)
I.show()

Nepal

dieter
fonte
Você tem dois triângulos extra em ambos a lua eo sol, deve ser de 8 e 10, e não 10 e 12 :)
Kade