Preencher as lacunas

14

Dada uma imagem em preto e branco com fundo branco e um conjunto de pontos pretos, pinte um conjunto de pixels brancos em vermelho, para que haja um caminho entre cada par de pixels pretos.

Detalhes

  • Um caminho é um conjunto de pixels conectados (conectividade de 8 vizinhanças). Pixels pretos podem ser usados ​​como parte dos caminhos. O objetivo é tentar minimizar o conjunto de pixels vermelhos nas condições acima e gerar uma imagem correspondente.

  • Você não precisa encontrar a solução ideal.

  • Uma solução trivial e ao mesmo tempo pior é pintar todos os pixels brancos em vermelho.

  • Exemplo (os pixels são ampliados para visibilidade):

Detalhes

  • Dada uma imagem de pixel (em qualquer formato adequado), retorne outra imagem com os pontos conectados conforme especificado acima, bem como um número inteiro indicando quantos pixels vermelhos foram usados.
  • A Pontuação é o produto de (1 + o número de pixels vermelhos) para cada um dos 14 casos de teste.
  • O objetivo é ter a menor pontuação.

Casos de teste

As 14 caixas de teste são mostradas abaixo. Um programa python para verificar a conexão das saídas pode ser encontrado aqui.

Meta

Obrigado a @Veskah, @Fatalize, @ wizzwizz4 e @trichoplax pelas várias sugestões.

flawr
fonte
1
Bom desafio; Gosto de esquemas de pontuação diferentes e criativos. Presumo que o programa precise trabalhar em uma imagem arbitrária, não apenas esses 14 exemplos específicos? Em caso afirmativo, podemos assumir um tamanho máximo razoável, como 512x512 pela imagem da Mona Lisa ou 1024x1024?
BradC
Obrigado pelo feedback! Sim, você pode assumir um tamanho máximo (também um tamanho mínimo, se necessário), desde que todos os 14 exemplos possam ser processados.
flawr
Como faço para converter png para ascii ou json ou algo mais fácil de analisar?
ngn 5/05/19
Você precisa calcular sua própria pontuação? Um programa que tenta todas as combinações possíveis de pixels brancos para pintar de vermelho e vê qual subconjunto tem o menor número de pixels vermelhos ao conectar todos os pixels pretos teria a melhor pontuação possível, mas seria tão lento que levaria mais tempo que a vida útil do universo para realmente calcular essa pontuação.
Leo Tenenbaum
1
@ngn Abra no GIMP, salve no formato netpbm.
Wizzwizz4

Respostas:

7

C, pontuação 2.397x10 ^ 38

Cara, isso demorou muito para ser feito, provavelmente devido à minha escolha de idioma. Coloquei o algoritmo trabalhando bastante cedo, mas tive muitos problemas com a alocação de memória (não era possível liberar material recursivamente devido a estouros de pilha, o tamanho dos vazamentos era enorme).

Ainda! Ele supera a outra entrada em todos os casos de teste e pode até ser o ideal, aproxima-se bastante ou é a solução ideal muitas vezes.

Enfim, aqui está o código:

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>

#define WHITE 'W'
#define BLACK 'B'
#define RED   'R'


typedef struct image {
    int w, h;
    char* buf;
} image;

typedef struct point {
    int x, y;
    struct point *next;
    struct point *parent;
} point;

typedef struct shape {
    point* first_point;
    point* last_point;

    struct shape* next_shape;
} shape;


typedef struct storage {
    point* points;
    size_t points_size;
    size_t points_index;

    shape* shapes;
    size_t shapes_size;
    size_t shapes_index;
} storage;

char getpx(image* img, int x, int y) {
    if (0>x || x>=img->w || 0>y || y>=img->h) {
        return WHITE;
    } else {
        return img->buf[y*img->w+x];
    }
}

storage* create_storage(int w, int h) {
    storage* ps = (storage*)malloc(sizeof(storage));

    ps->points_size = 8*w*h;
    ps->points = (point*)calloc(ps->points_size, sizeof(point));
    ps->points_index = 0;

    ps->shapes_size = 2*w*h;
    ps->shapes = (shape*)calloc(ps->shapes_size, sizeof(shape));
    ps->shapes_index = 0;

    return ps;
}

void free_storage(storage* ps) {
    if (ps != NULL) {
        if (ps->points != NULL) {
            free(ps->points);
            ps->points = NULL;
        }
        if (ps->shapes != NULL) {
            free(ps->shapes);
            ps->shapes = NULL;
        }
        free(ps);
    }
}


point* alloc_point(storage* ps) {
    if (ps->points_index == ps->points_size) {
        printf("WHOAH THERE BUDDY SLOW DOWN\n");
        /*// double the size of the buffer
        point* new_buffer = (point*)malloc(ps->points_size*2*sizeof(point));
        // need to change all existing pointers to point to new buffer
        long long int pointer_offset = (long long int)new_buffer - (long long int)ps->points;
        for (size_t i=0; i<ps->points_index; i++) {
            new_buffer[i] = ps->points[i];
            if (new_buffer[i].next != NULL) {
                new_buffer[i].next += pointer_offset;
            }
            if (new_buffer[i].parent != NULL) {
                new_buffer[i].parent += pointer_offset;
            }
        }

        for(size_t i=0; i<ps->shapes_index; i++) {
            if (ps->shapes[i].first_point != NULL) {
                ps->shapes[i].first_point += pointer_offset;
            }
            if (ps->shapes[i].last_point != NULL) {
                ps->shapes[i].last_point += pointer_offset;
            }
        }

        free(ps->points);
        ps->points = new_buffer;
        ps->points_size = ps->points_size * 2;*/
    }
    point* out = &(ps->points[ps->points_index]);
    ps->points_index += 1;
    return out;
}

shape* alloc_shape(storage* ps) {
    /*if (ps->shapes_index == ps->shapes_size) {
        // double the size of the buffer
        shape* new_buffer = (shape*)malloc(ps->shapes_size*2*sizeof(shape));
        long long int pointer_offset = (long long int)new_buffer - (long long int)ps->shapes;
        for (size_t i=0; i<ps->shapes_index; i++) {
            new_buffer[i] = ps->shapes[i];
            if (new_buffer[i].next_shape != NULL) {
                new_buffer[i].next_shape += pointer_offset;
            }
        }
        free(ps->shapes);
        ps->shapes = new_buffer;
        ps->shapes_size = ps->shapes_size * 2;
    }*/
    shape* out = &(ps->shapes[ps->shapes_index]);
    ps->shapes_index += 1;
    return out;
}

shape floodfill_shape(image* img, storage* ps, int x, int y, char* buf) {
    // not using point allocator for exploration stack b/c that will overflow it

    point* stack = (point*)malloc(sizeof(point));
    stack->x = x;
    stack->y = y;
    stack->next = NULL;
    stack->parent = NULL;

    point* explored = NULL;
    point* first_explored;
    point* next_explored;

    while (stack != NULL) {
        int sx = stack->x;
        int sy = stack->y;
        point* prev_head = stack;
        stack = stack->next;
        free(prev_head);

        buf[sx+sy*img->w] = 1; // mark as explored

        // add point to shape
        next_explored = alloc_point(ps);
        next_explored->x = sx;
        next_explored->y = sy;
        next_explored->next = NULL;
        next_explored->parent = NULL;

        if (explored != NULL) {
            explored->next = next_explored;
        } else {
            first_explored = next_explored;
        }
        explored = next_explored;

        for (int dy=-1; dy<2; dy++) {
        for (int dx=-1; dx<2; dx++) {
            if (dy != 0 || dx != 0) {
                int nx = sx+dx;
                int ny = sy+dy;
                if (getpx(img, nx, ny) == WHITE || buf[nx+ny*img->w]) {
                    // skip adding point to fringe
                } else {
                    // push point to top of stack
                    point* new_point = (point*)malloc(sizeof(point));
                    new_point->x = nx;
                    new_point->y = ny;
                    new_point->next = stack;
                    new_point->parent = NULL;

                    stack = new_point;
                } 
            }
        }
        }
    }

    /*if (getpx(img, x, y) == WHITE || buf[x+y*img->w]) {
        return (shape){NULL, NULL, NULL};
    } else {
        buf[x+y*img->w] = 1;

        shape e  = floodfill_shape(img, ps, x+1, y,   buf);
        shape ne = floodfill_shape(img, ps, x+1, y+1, buf);
        shape n  = floodfill_shape(img, ps, x,   y+1, buf);
        shape nw = floodfill_shape(img, ps, x-1, y+1, buf);
        shape w  = floodfill_shape(img, ps, x-1, y,   buf);
        shape sw = floodfill_shape(img, ps, x-1, y-1, buf);
        shape s  = floodfill_shape(img, ps, x,   y-1, buf);
        shape se = floodfill_shape(img, ps, x+1, y-1, buf);

        point *p = alloc_point(ps);
        p->x = x;
        p->y = y;
        p->next = NULL;
        p->parent = NULL;

        shape o = (shape){p, p, NULL};
        if (e.first_point != NULL) {
            o.last_point->next = e.first_point;
            o.last_point = e.last_point;
        }
        if (ne.first_point != NULL) {
            o.last_point->next = ne.first_point;
            o.last_point = ne.last_point;
        }
        if (n.first_point != NULL) {
            o.last_point->next = n.first_point;
            o.last_point = n.last_point;
        }
        if (nw.first_point != NULL) {
            o.last_point->next = nw.first_point;
            o.last_point = nw.last_point;
        }
        if (w.first_point != NULL) {
            o.last_point->next = w.first_point;
            o.last_point = w.last_point;
        }
        if (sw.first_point != NULL) {
            o.last_point->next = sw.first_point;
            o.last_point = sw.last_point;
        }
        if (s.first_point != NULL) {
            o.last_point->next = s.first_point;
            o.last_point = s.last_point;
        }
        if (se.first_point != NULL) {
            o.last_point->next = se.first_point;
            o.last_point = se.last_point;
        }

        return o;
    }*/

    shape out = {first_explored, explored, NULL};

    return out;
}

shape* create_shapes(image* img, storage* ps) {
    char* added_buffer = (char*)calloc(img->w*img->h, sizeof(char));
    shape* first_shape = NULL;
    shape* last_shape = NULL;
    int num_shapes = 0;
    for (int y=0; y<img->h; y++) {
        for (int x=0; x<img->w; x++) {
            if (getpx(img, x, y) != WHITE && !(added_buffer[x+y*img->w])) {
                shape* alloced_shape = alloc_shape(ps);
                *alloced_shape = floodfill_shape(img, ps, x, y, added_buffer);

                if (first_shape == NULL) {
                    first_shape = alloced_shape;
                    last_shape = alloced_shape;
                } else if (last_shape != NULL) {
                    last_shape->next_shape = alloced_shape;
                    last_shape = alloced_shape;
                }

                num_shapes++;
            }
        }
    }

    free(added_buffer);

    return first_shape;
}

void populate_buf(image* img, shape* s, char* buf) {
    point* p = s->first_point;

    while (p != NULL) {
        buf[p->x+p->y*img->w] = 1;
        p = p->next;
    }
}

bool expand_frontier(image* img, storage* ps, shape* prev_frontier, shape* next_frontier, char* buf) {
    point* p = prev_frontier->first_point;
    point* n = NULL;

    bool found = false;

    size_t starting_points_index = ps->points_index;

    while (p != NULL) {
        for (int dy=-1; dy<2; dy++) {
        for (int dx=-1; dx<2; dx++) {
            if (dy != 0 || dx != 0) {
                int nx = p->x+dx;
                int ny = p->y+dy;
                if ((0<=nx && nx<img->w && 0<=ny && ny<img->h) // in bounds
                        && !buf[nx+ny*img->w]) {               // not searched yet
                    buf[nx+ny*img->w] = 1;
                    if (getpx(img, nx, ny) != WHITE) {
                        // found a new shape!
                        ps->points_index = starting_points_index;
                        n = alloc_point(ps);
                        n->x = nx;
                        n->y = ny;
                        n->next = NULL;
                        n->parent = p;
                        found = true;
                        goto __expand_frontier_fullbreak;
                    } else {
                        // need to search more
                        point* f = alloc_point(ps);
                        f->x = nx;
                        f->y = ny;
                        f->next = n;
                        f->parent = p;
                        n = f;
                    }
                }
            }
        }}

        p = p->next;
    }
__expand_frontier_fullbreak:
    p = NULL;
    point* last_n = n;
    while (last_n->next != NULL) {
        last_n = last_n->next;
    }

    next_frontier->first_point = n;
    next_frontier->last_point = last_n;

    return found;
}

void color_from_frontier(image* img, point* frontier_point) {
    point* p = frontier_point->parent;

    while (p->parent != NULL) { // if everything else is right,
                                // a frontier point should come in a chain of at least 3
                                // (f point (B) -> point to color (W) -> point in shape (B) -> NULL)
        img->buf[p->x+p->y*img->w] = RED;
        p = p->parent;
    }
}

int main(int argc, char** argv) {
    if (argc < 3) {
        printf("Error: first argument must be filename to load, second argument filename to save to.\n");
        return 1;
    }

    char* fname = argv[1];
    FILE* fp = fopen(fname, "r");

    if (fp == NULL) {
        printf("Error opening file \"%s\"\n", fname);
        return 1;
    }

    int w, h;
    w = 0;
    h = 0;
    fscanf(fp, "%d %d\n", &w, &h);

    if (w==0 || h==0) {
        printf("Error: invalid width/height specified\n");
        return 1;
    }

    char* buf = (char*)malloc(sizeof(char)*w*h+1);
    fgets(buf, w*h+1, fp);
    fclose(fp);

    image img = (image){w, h, buf};

    int nshapes = 0;
    storage* ps = create_storage(w, h);

    while (nshapes != 1) {
        // main loop, do processing step until one shape left
        ps->points_index = 0;
        ps->shapes_index = 0;

        shape* head = create_shapes(&img, ps);
        nshapes = 0;
        shape* pt = head;
        while (pt != NULL) {
            pt = pt->next_shape;
            nshapes++;
        }
        if (nshapes % 1024 == 0) {
            printf("shapes left: %d\n", nshapes);
        }
        if (nshapes == 1) {
            goto __main_task_complete;
        }


        shape* frontier = alloc_shape(ps);
        // making a copy so we can safely free later
        point* p = head->first_point;
        point* ffp = NULL;
        point* flp = NULL;
        while (p != NULL) {
            if (ffp == NULL) {
                ffp = alloc_point(ps);
                ffp->x = p->x;
                ffp->y = p->y;
                ffp->next = NULL;
                ffp->parent = NULL;
                flp = ffp;
            } else {
                point* fnp = alloc_point(ps);
                fnp->x = p->x;
                fnp->y = p->y;
                fnp->next = NULL;
                fnp->parent = NULL;

                flp->next = fnp;
                flp = fnp;
            }

            p = p->next;
        }
        frontier->first_point = ffp;
        frontier->last_point = flp;
        frontier->next_shape = NULL;

        char* visited_buf = (char*)calloc(img.w*img.h+1, sizeof(char));
        populate_buf(&img, frontier, visited_buf);

        shape* new_frontier = alloc_shape(ps);
        new_frontier->first_point = NULL;
        new_frontier->last_point = NULL;
        new_frontier->next_shape = NULL;

        while (!expand_frontier(&img, ps, frontier, new_frontier, visited_buf)) {
            frontier->first_point = new_frontier->first_point;
            frontier->last_point = new_frontier->last_point;
            new_frontier->next_shape = frontier;
        }

        free(visited_buf);
        color_from_frontier(&img, new_frontier->first_point);
__main_task_complete:
        img = img;
    }

    free_storage(ps);

    char* outfname = argv[2];
    fp = fopen(outfname, "w");

    if (fp == NULL) {
        printf("Error opening file \"%s\"\n", outfname);
        return 1;
    }

    fprintf(fp, "%d %d\n", img.w, img.h);
    fprintf(fp, "%s", img.buf);

    free(img.buf);

    fclose(fp);

    return 0;
}

Testado em: Arch Linux, GCC 9.1.0, -O3

Esse código recebe entrada / saída em um arquivo personalizado que chamo de "cppm" (porque é como uma versão condensada do formato PPM clássico). Um script python para converter de / para ele está abaixo:

from PIL import Image

BLACK='B'
WHITE='W'
RED  ='R'


def image_to_cppm(infname, outfname):
    outfile = open(outfname, 'w')
    im = Image.open(infname)

    w, h = im.width, im.height
    outfile.write(f"{w} {h}\n")
    for y in range(h):
        for x in range(w):
            r, g, b, *_ = im.getpixel((x, y))
            if r==0 and g==0 and b==0:
                outfile.write(BLACK)
            elif g==0 and b==0:
                outfile.write(RED)
            else:
                outfile.write(WHITE)
    outfile.write("\n")
    outfile.close()
    im.close()

def cppm_to_image(infname, outfname):
    infile = open(infname, 'r')

    w, h = infile.readline().split(" ")
    w, h = int(w), int(h)

    im = Image.new('RGB', (w, h), color=(255, 255, 255))

    for y in range(h):
        for x in range(w):
            c = infile.read(1)
            if c==BLACK:
                im.putpixel((x,y), (0, 0, 0))
            elif c==RED:
                im.putpixel((x,y), (255, 0, 0))

    infile.close()
    im.save(outfname)
    im.close()


if __name__ == "__main__":
    import sys
    if len(sys.argv) < 3:
        print("Error: must provide 2 files to convert, first is from, second is to")

    infname = sys.argv[1]
    outfname = sys.argv[2]

    if not infname.endswith("cppm") and outfname.endswith("cppm"):
        image_to_cppm(infname, outfname)
    elif infname.endswith("cppm") and not outfname.endswith("cppm"):
        cppm_to_image(infname, outfname)
    else:
        print("didn't do anything, exactly one file must end with .cppm")

Explicação do algoritmo

O funcionamento desse algoritmo é que ele começa encontrando todas as formas conectadas na imagem, incluindo pixels vermelhos. Ele pega o primeiro e expande sua fronteira, um pixel de cada vez, até encontrar outra forma. Em seguida, pinta todos os pixels do toque à forma original (usando a lista vinculada criada ao longo do caminho para acompanhar). Por fim, repete o processo, encontrando todas as novas formas criadas, até que haja apenas uma forma.

Galeria de imagens

Testcase 1, 183 pixels

testcase 1

Testcase 2, 140 pixels

testcase 2

Testcase 3, 244 pixels

testcase 3

Testcase 4, 42 pixels

testcase 4

Testcase 5, 622 pixels

testcase 5

Testcase 6, 1 pixel

testcase 6

Testcase 7, 104 pixels

testcase 7

Testcase 8, 2286 pixels

testcase 8

Testcase 9, 22 pixels

testcase 9

Testcase 10, 31581 pixels

testcase 10

Testcase 11, 21421 pixels

testcase 11

Testcase 12, 5465 pixels

testcase 12

Testcase 13, 4679 pixels

testcase 13

Testcase 14, 7362 pixels

testcase 14

Azul
fonte
2
Bom trabalho! Parece muito eficiente, embora eu possa imaginar algumas formas com soluções um pouco mais ideais: Caixa de teste 3 (4 pontos em um quadrado), por exemplo, eu (manualmente) cheguei a 175 (um X vermelho), não sei como Eu forçaria isso via algoritmo.
BradC
6

Python, 2,62 * 10 ^ 40

Esse algoritmo apenas preenche (BFS) o plano a partir das partes pretas da imagem, onde para cada novo pixel registramos a parte preta da qual foi inundada. Assim que temos dois pixels vizinhos com diferentes partes pretas como ancestrais, basicamente mesclamos essas duas partes pretas juntando-as através dos ancestrais dos dois vizinhos que acabamos de encontrar. Em teoria, isso poderia ser implementado O(#pixels), mas para manter a quantidade de código em um nível aceitável, essa implementação é um pouco pior.

Resultado

insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui insira a descrição da imagem aqui

import numpy as np
from scipy import ndimage
import imageio
from collections import deque

# path to your image
for k in range(1, 15):
    fname=str(k).zfill(2) +'.png'
    print("processing ", fname)

    # load image
    img = imageio.imread("./images/"+fname, pilmode="RGB")
    print(img.shape)

    # determine non_white part
    white = np.logical_and(np.logical_and(img[:,:,0] == 255, img[:,:,1] == 255), img[:,:,2] == 255)
    non_white = np.logical_not(white)

    # find connected components of non-white part
    neighbourhood = np.ones((3,3))
    labeled, nr_objects = ndimage.label(non_white, neighbourhood)

    # print result
    print("number of separate objects is {}".format(nr_objects))

    # start flood filling algorithm
    ind = np.nonzero(labeled)
    front = deque(zip(ind[0],ind[1]))

    membership = np.copy(labeled)
    is_merge_point = np.zeros_like(labeled) > 0
    parent = np.zeros((2,) + labeled.shape) #find ancestor of each pixel
    is_seed = labeled > 0
    size_i, size_j = labeled.shape
    # flood from every seed
    while front: #while we have unexplored pixels
        point = front.popleft()
        # check neighbours:
        for (di,dj) in [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]:
            current = membership[point[0], point[1]]
            new_i, new_j = point[0]+di, point[1]+dj
            if 0 <= new_i < size_i and 0 <= new_j < size_j:
                value = membership[new_i, new_j]
                if value == 0:
                    membership[new_i, new_j] = current
                    front.append((new_i, new_j))
                    parent[:, new_i, new_j] = point
                elif value != current: #MERGE!
                    is_merge_point[point[0], point[1]] = True
                    is_merge_point[new_i, new_j] = True
                    membership[np.logical_or(membership == value, membership == current)] = min(value, current)

    # trace back from every merger
    ind = np.nonzero(is_merge_point)
    merge_points = deque(zip(ind[0].astype(np.int),ind[1].astype(np.int)))
    for point in merge_points:
        next_p = point
        while not is_seed[next_p[0], next_p[1]]:
            is_merge_point[next_p[0], next_p[1]] = True
            next_p = parent[:, next_p[0], next_p[1]].astype(np.int)

    # add red points:
    img_backup = np.copy(img)
    img[:,:,0][is_merge_point] = 255 * img_backup[:,:,0]
    img[:,:,1][is_merge_point] = 0   * img_backup[:,:,1]
    img[:,:,2][is_merge_point] = 0   * img_backup[:,:,2]

    #compute number of new points
    n_red_points = (img[:,:,0] != img[:,:,1]).sum()
    print("#red points:", n_red_points)

    # plot: each component should have separate color
    imageio.imwrite("./out_images/"+fname, np.array(img))

Ponto

(1+183)*(1+142)*(1+244)*(1+42)*(1+1382)*(1+2)*(1+104)*(1+7936)*(1+26)*(1+38562)*(1+42956)*(1+6939)*(1+8882)*(1+9916)
= 26208700066468930789809050445560539404000
= 2.62 * 10^40
flawr
fonte
- Isso, acredito, é ótimo. Bem feito. - Ok, isso não é o ideal. Eu não entendo porque não.
Wizzwizz4
@ wizzwizz4 Veja o caso fácil dos quatro cantos de um quadrado: a solução ideal seria um X. Embora em teoria meu algoritmo possa encontrar essa solução, é muito improvável. É muito mais provável que encontre uma solução com três caminhos cada um conectando dois pontos.
flawr
@ wizzwizz4 Sim, dê um zoom no exemplo de texto da wikipedia e você verá vários lugares onde um caminho de conexão diferente salvaria um pixel vermelho ou dois; eles vão somar.
BradC 7/08/19
Mas isso parece bolhas de sabão em estacas, que é uma solução legítima para o problema da árvore de Steiner .
Wizzwizz4
1
@ wizzwizz4 A diferença, então, deve ser que não estamos conectando pontos , estamos conectando conjuntos de pontos; portanto, não devemos decidir quais pontos em cada conjunto serão conectados da melhor maneira possível. Ampliar a exemplo de texto de novo, as melhorias que você pode ver na sua maioria têm a ver com que partes de cada forma estão conectados.
BradC 8/08/19
5

Python 3: 1.7x10 ^ 42 1.5x10 ^ 41

Usando Pillow, numpye scipy.

Supõe-se que as imagens estejam em uma imagespasta localizada no mesmo diretório que o script.

Isenção de responsabilidade : leva muito tempo para processar todas as imagens.

Código

import sys
import os

from PIL import Image
import numpy as np
import scipy.ndimage


def obtain_groups(image, threshold, structuring_el):
    """
    Obtain isles of unconnected pixels via a threshold on the R channel
    """
    image_logical = (image[:, :, 1] < threshold).astype(np.int)
    return scipy.ndimage.measurements.label(image_logical, structure=structuring_el)


def swap_colors(image, original_color, new_color):
    """
    Swap all the pixels of a specific color by another color 
    """
    r1, g1, b1 = original_color  # RGB value to be replaced
    r2, g2, b2 = new_color  # New RGB value
    red, green, blue = image[:, :, 0], image[:, :, 1], image[:, :, 2]
    mask = (red == r1) & (green == g1) & (blue == b1)
    image[:, :, :3][mask] = [r2, g2, b2]
    return image


def main(image_path=None):
    images = os.listdir("images")
    f = open("results.txt", "w")

    if image_path is not None:
        images = [image_path]

    for image_name in images:
        im = Image.open("images/"+image_name).convert("RGBA")
        image = np.array(im)

        image = swap_colors(image, (255, 255, 255), (255, 0, 0))

        # create structuring element to determine unconnected groups of pixels in image
        s = scipy.ndimage.morphology.generate_binary_structure(2, 2)

        for i in np.ndindex(image.shape[:2]):
            # skip black pixels
            if sum(image[i[0], i[1]]) == 255:
                continue
            image[i[0], i[1]] = [255, 255, 255, 255]
            # label the different groups, considering diagonal connections as valid
            groups, num_groups = obtain_groups(image, 255, s)
            if num_groups != 1:
                image[i[0], i[1]] = [255, 0, 0, 255]
            # Show percentage
            print((i[1] + i[0]*im.size[0])/(im.size[0]*im.size[1]))

        # Number of red pixels
        red_p = 0
        for i in np.ndindex(image.shape[:2]):
            j = (im.size[1] - i[0] - 1, im.size[0] - i[1] - 1)
            # skip black and white pixels
            if sum(image[j[0], j[1]]) == 255 or sum(image[j[0], j[1]]) == 255*4:
                continue
            image[j[0], j[1]] = [255, 255, 255, 255]
            # label the different groups, considering diagonal connections as valid
            groups, num_groups = obtain_groups(image, 255, s)
            if num_groups != 1:
                image[j[0], j[1]] = [255, 0, 0, 255]
            # Show percentage
            print((j[1] + j[0]*im.size[0])/(im.size[0]*im.size[1]))
            red_p += (sum(image[j[0], j[1]]) == 255*2)

        print(red_p)
        f.write("r_"+image_name+": "+str(red_p)+"\n")

        im = Image.fromarray(image)
        im.show()
        im.save("r_"+image_name)
    f.close()


if __name__ == "__main__":
    if len(sys.argv) == 2:
        main(sys.argv[1])
    else:
        main()

Explicação

Solução trivial. Começamos alterando a cor de todos os pixels brancos em uma imagem para vermelho. Ao fazer isso, é garantido que todos os elementos (qualquer ilha de pixels pretos) estejam conectados.

Em seguida, iteramos sobre todos os pixels da imagem, começando no canto superior esquerdo e movendo para a direita e para baixo. Para cada pixel vermelho, descobrimos que mudamos sua cor para branco. Se após essa mudança de cor ainda houver apenas um elemento (um elemento agora sendo qualquer ilha de pixels pretos e vermelhos), deixamos o pixel branco e passamos para o próximo pixel. No entanto, se depois que a cor mudar de vermelho para branco, o número de elementos for maior que um, deixamos o pixel vermelho e passamos para o próximo pixel.

Atualizar

Como pode ser visto (e esperado), as conexões obtidas usando apenas este método mostram um padrão regular e, em alguns casos, como nas imagens 6 e 11, existem pixels vermelhos desnecessários.

Esses pixels vermelhos extras podem ser facilmente removidos iterando novamente sobre a imagem e executando as mesmas operações explicadas acima, mas do canto inferior direito ao canto superior esquerdo. Esta segunda passagem é muito mais rápida, pois é necessário verificar a quantidade de pixels vermelhos.

Resultados

As imagens modificadas após a segunda passagem são listadas duas vezes para mostrar as diferenças.

18825

Número de pixels vermelhos: 18825

334

Número de pixels vermelhos: 334

1352

Número de pixels vermelhos: 1352

20214

Número de pixels vermelhos: 20214

insira a descrição da imagem aqui

Número de pixels vermelhos: 47268

63. insira a descrição da imagem aqui

Número de pixels vermelhos: 63. 27

17889

Número de pixels vermelhos: 17889

259

Número de pixels vermelhos: 259

6746

Número de pixels vermelhos: 6746

586

Número de pixels vermelhos: 586

9 insira a descrição da imagem aqui

Número de pixels vermelhos: 9 1

126

Número de pixels vermelhos: 126

212

Número de pixels vermelhos: 212

683

Número de pixels vermelhos: 683

Cálculo da pontuação:

(1 + 6746) * (1 + 126) * (1 + 259) * (1 + 17889) * (1 + 334) * (1 + 586) * (1 + 18825) * (1 + 9) * (1 +683) * (1 + 1352) * (1 + 20214) * (1 + 212) * (1 + 63) * (1 + 47268) = 1778700054505858720992088713763655500800000 ~ 1,7x10 ^ 42

Computação de pontuação atualizada após adicionar a segunda passagem:

(1+ 18825) * (1+ 1352) * (1+ 20214) * (1+ 47268) * (1+ 27) * (1+ 17889) * (1+ 6746) * (1+ 586) * (1+ + 1) * (1+ 126) * (1+ 212) * (1+ 334) * (1 + 259) * (1 + 683) = 155636254769262638086807762454319856320000 ~ 1,5x10 ^ 41

Ioannes
fonte
Bom trabalho. Parece que nós pode precisar de marcar esta em notação científica: 1,7x10 ^ 42
BradC