Para onde vai o laser?

34

Pegue uma grade bidimensional e desenhe um número de segmentos de linha para representar espelhos. Agora escolha um ponto para colocar um laser teórico e um ângulo para definir a direção que está apontando. A questão é: se você segue o caminho do feixe de laser por uma distância especificada, em que ponto de coordenada você está?

Exemplo:

exemplo de laser

Nesta imagem, Lé a localização do laser, té o ângulo que o (medido a partir do eixo X positivo), M1, M2, e M3são todos os espelhos segmento de linha, e Eé o ponto do percurso do feixe de laser, depois D = d1 + d2 + d3 + d4de unidades, a partir de L.

Objetivo

Escrever o programa mais curto (em bytes) que saídas Edada L, t, D, e uma lista de espelhos.
(Use http://mothereff.in/byte-counter para contar bytes.)

Formato de entrada

A entrada virá do stdin no formato:

Lx Ly t D M1x1 M1y1 M1x2 M1y2 M2x1 M2y1 M2x2 M2y2 ...
  • Todos os valores serão pontos correspondentes esse regex flutuante: [-+]?[0-9]*\.?[0-9]+.
  • Sempre há exatamente um espaço entre cada número.
  • É necessário solicitar cotações em torno da entrada.
  • testá em graus, mas não necessariamente na [0, 360)faixa. (Se preferir, use radianos, apenas diga na sua resposta.)
  • Dpode ser negativo, girando efetivamente o laser 180 graus. Dtambém pode ser 0.
  • Pode haver arbitrariamente muitos espelhos (incluindo nenhum).
  • A ordem dos espelhos não deve importar.
  • Você pode assumir que a entrada será apresentada em múltiplos de 4 números. por exemplo, Lx Ly tou Lx Ly t D M1x1são inválidos e não serão testados. Nenhuma entrada também é inválida.

O layout acima pode ser inserido como:

1 1 430 17 4.8 6.3 6.2 5.3 1.5 4.8 3.5 6 6.3 1.8 7.1 3

(Observe que a imagem foi desenhada à mão livre e esses valores são apenas aproximações. Os valores de entrada de Martin Büttner de

1 1 430 17 4.8 5.3 6.2 4.3 1.5 4.8 3.5 6 6.3 1.8 7.1 3

dará mais colisões, embora não correspondam ao esboço.)

Formato de saída

A saída deve ir para stdout no formato:

Ex Ey

Estes também são carros alegóricos e podem estar na forma exponencial.

Notas

  • Os espelhos podem se cruzar.
  • Ambos os lados dos espelhos são reflexivos.
  • O raio pode atingir o mesmo espelho várias vezes.
  • O raio continua para sempre.

Casos indefinidos

Você pode assumir que os casos em que

  • o laser começa em um segmento de linha de espelho
  • o raio laser atinge o ponto final de um espelho
  • o raio laser atinge a interseção entre dois espelhos

são indefinidos e não serão testados. Seu programa pode fazer qualquer coisa, se isso ocorrer, incluindo gerar um erro.

Bônus

Apenas por diversão, atribuirei 200 pontos de recompensa à mais votada, que gera uma representação gráfica do problema (você pode até escrever um script interativo). Esses envios de bônus não precisam ser disputados e podem ser tolerantes com a forma como a entrada e a saída são tratadas. Eles são distintos dos envios reais de golfe, mas ambos devem ser enviados na mesma resposta .

Nota: apenas enviar uma resposta de bônus é bom, você não será a resposta aceita. Para ser aceito, você deve seguir exatamente as especificações de entrada / saída (por exemplo, apenas a saída envolve Ex Ey, não imagens) e ser o menor.

Passatempos de Calvin
fonte
1
Tendo envios de golfe e sem golfe em uma das perguntas, vai se tornar uma grande bagunça. Os 200 pontos de recompensa são tão atraentes que o golfe se torna o ponto menor.
209 Howard
1
@ PeterTaylor Você está me citando bem fora de contexto. Eu li as respostas de bônus da seção do OP, pois as duas submissões são completamente distintas, mas pertencem ao mesmo post, se ambas forem tentadas (o que significaria que apenas a resposta popcon também ficaria bem). De qualquer forma, eles são seus votos e você decide como os usa, e provavelmente adicionarei uma versão com golf em qualquer momento. Mas acho que o OP poderia esclarecer se ele pretendia que as respostas apenas do popcon fossem válidas ou não.
Martin Ender
1
@ MartinBüttner, " bônus " significa " adicional, extra ". Não faz parte do principal desafio. E a pergunta tem apenas uma tag, código-golfe .
Peter Taylor
2
@PeterTaylor MartinBüttner está certo. Responder apenas à parte bônus da pergunta é bom. Eu disse que as respostas dos bônus podem ser irrelevantes e tolerantes com a E / S, e todos os envios de bônus atuais parecem bons para mim. A apresentação mais curta que não seguem exatamente a especificação será a resposta aceita. Atualmente não há envios, mas tudo bem para mim.
Hobbies de Calvin
1
Nesse caso, " bônus " é a palavra errada a ser usada e você está pedindo às pessoas que violem as regras , o que não é útil.
Peter Taylor

Respostas:

39

Ruby, 327 bytes

(role para baixo)

Mathematica, resposta bônus

insira a descrição da imagem aqui

Estou indo apenas para a apresentação gráfica agora. Eu posso portar isso para Ruby mais tarde e jogar golfe, se eu quiser.

(* This function tests for an intersection between the laser beam
   and a mirror. r contains the end-points of the laser, s contains
   the end-points of the mirror. *)
intersect[r_, s_] := Module[
   {lr, dr, nr, ds, ns, \[Lambda]},
   (* Get a unit vector in the direction of the beam *)
   dr = r[[2]] - r[[1]];
   lr = Norm@dr;
   dr /= lr;
   (* Get a normal to that vector *)
   nr = {dr[[2]], -dr[[1]]};

   (* The sign of dot product in here depends on whether that end-point
      of the mirror is to the left or to the right of the array. Return 
      infinity if both ends of s are on the same side of the beam. *)
   If[Apply[Times, (s - {r[[1]], r[[1]]}).nr] > 0, 
    Return[\[Infinity]]];

   (* Get a unit vector along the mirror. *)
   ds = s[[2]] - s[[1]];
   ds /= Norm@ds;
   (* And a normal to that. *)
   ns = {ds[[2]], -ds[[1]]};
   (* We can write the beam as p + λ*dr and mirror as q + μ*ds,
      where λ and μ are real parameters. If we set those equal and
      solve for λ we get the following equation. Since dr is a unit 
      vector, λ is also the distance to the intersection. *)
   \[Lambda] = ns.(r[[1]] - s[[1]])/nr.ds;
   (* Make sure that the intersection is before the end of the beam.
      This check could actually be slightly simpler (see Ruby version). *)
   If[\[Lambda] != 0 && lr/\[Lambda] < 1, Infinity, \[Lambda]]
   ];

(* This function actually does the simulation and generates the plot. *)
plotLaser[L_, t_, distance_, M_] := Module[
   {coords, plotRange, points, e, lastSegment, dLeft, \[Lambda], m, p,
     d, md, mn, segments, frames, durations},

   (* This will contain all the intersections along the way, as well
      as the starting point. *)
   points = {L};
   (* The tentative end point. *)
   e = L + distance {Cos@t, Sin@t};
   (* This will always be the currently last segment for which we need
      to check for intersections. *)
   lastSegment = {L, e};
   (* Keep track of the remaining beam length. *)
   dLeft = distance;

   While[True,
    (* Use the above function to find intersections with all mirrors
       and pick the first one (we add a small tolerance to avoid
       intersections with the most recent mirror). *)
    {\[Lambda], m} = 
     DeleteCases[
       SortBy[{intersect[lastSegment, #], #} & /@ M, #[[1]] &], 
       i_ /; i[[1]] < 1*^-10][[1]];
    (* If no intersection was found, we're done. *)
    If[\[Lambda] == \[Infinity], Break[]];
    (* Reduce remaining beam length. *)
    dLeft -= \[Lambda];
    (* The following lines reflect the beam at the mirror and add
       the intersection to our list of points. We also update the
       end-point and the last segment. *)
    p = lastSegment[[1]];
    d = -Subtract @@ lastSegment;
    d /= Norm@d;
    md = -Subtract @@ m;
    md /= Norm@md;
    mn = {md[[2]], -md[[1]]};
    AppendTo[points, p + \[Lambda]*d];
    d = -d + 2*(d - d.mn*mn);
    e = Last@points + dLeft*d;
    lastSegment = {Last@points, e};
    ];
   (* Get a list of all points in the set up so we can determine
      the plot range. *)
   coords = Transpose@Join[Flatten[M, 1], {L, e}];
   (* Turn the list of points into a list of segments. *)
   segments = Partition[points, 2, 1];
   (* For each prefix of that list, generate a frame. *)
   frames = Map[
     Graphics[
       {Line /@ M,
        Red,
        Point@L,
        Line /@ segments[[1 ;; #]]},
       PlotRange -> {
         {Min@coords[[1]] - 1, Max@coords[[1]] + 1},
         {Min@coords[[2]] - 1, Max@coords[[2]] + 1}
         }
       ] &,
     Range@Length@segments];
   (* Generate the initial frame, without any segments. *)
   PrependTo[frames,
    Graphics[
     {Line /@ M,
      Red,
      Point@L},
     PlotRange -> {
       {Min@coords[[1]] - 1, Max@coords[[1]] + 1},
       {Min@coords[[2]] - 1, Max@coords[[2]] + 1}
       }
     ]
    ];
   (* Generate the final frame including lastSegment. *)
   AppendTo[frames,
    Graphics[
     {Line /@ M,
      Red,
      Point@L,
      Line /@ segments,
      Line[lastSegment],
      Point@e},
     PlotRange -> {
       {Min@coords[[1]] - 1, Max@coords[[1]] + 1},
       {Min@coords[[2]] - 1, Max@coords[[2]] + 1}
       }
     ]];

   (*Uncomment to only view the final state *)
   (*Last@frames*)

   (* Export the frames as a GIF. *)
   durations = ConstantArray[0.1, Length@frames];
   durations[[-1]] = 1;
   Export["hardcoded/path/to/laser.gif", frames, 
    "GIF", {"DisplayDurations" -> durations, ImageSize -> 600}];

   (* Generate a Mathematica animation form the frame. *)
   ListAnimate@frames
   ];

Você pode chamá-lo como

plotLaser[{1, 1}, 7.50492, 95, {
  {{4.8, 5.3}, {6.2, 4.3}}, {{1.5, 4.8}, {3.5, 6}}, {{6.3, 1.8}, {7.1, 3}}, 
  {{5, 1}, {4, 3}}, {{7, 6}, {5, 6.1}}, {{8.5, 2.965}, {8.4, 2}}, 
  {{8.5, 3.035}, {8.6, 4}}, {{8.4, 2}, {10.5, 3}}, {{8.6, 4}, {10.5, 3}}
}]

Isso fornecerá uma animação no Mathematica e também exportará um GIF (aquele na parte superior desta entrada). Estendi um pouco o exemplo dos OPs para isso, para torná-lo um pouco mais interessante.

Mais exemplos

Um tubo com paredes ligeiramente divergentes, mas com uma extremidade fechada:

plotLaser[{0, 0}, 1.51, 200, {
  {{0, 1}, {20, 1.1}},
  {{0, -1}, {20, -1.1}},
  {{20, 1.1}, {20, -1.1}}
}]

insira a descrição da imagem aqui

Um triângulo equilátero e uma direção inicial quase paralela a um dos lados.

plotLaser[{-1, 0}, Pi/3 + .01, 200, {
  {{-2.5, 5 Sqrt[3]/6}, {2.5, 5 Sqrt[3]/6}},
  {{0, -5 Sqrt[3]/3}, {-2.5, 5 Sqrt[3]/6}},
  {{0, -5 Sqrt[3]/3}, {2.5, 5 Sqrt[3]/6}}
}]

insira a descrição da imagem aqui

Mais um:

plotLaser[
 {0, 10}, -Pi/2, 145,
 {
   {{-1, 1}, {1, -1}}, {{4.5, -1}, {7.5, Sqrt[3] - 1}},
   {{11, 10}, {13, 10}}, {{16.5, Sqrt[3] - 1}, {19.5, -1}},
   {{23, -1}, {25, 1}}, {{23, 6}, {25, 4}}, {{18, 6}, {20, 4}}, {{18, 9}, {20, 11}},
   {{31, 9}, {31.01, 11}}, {{24.5, 10.01}, {25.52, 11.01}}, {{31, 4}, {31, 6}}, {{25, 4.6}, {26, 5.6}}, {{24.5, 0.5}, {25.5, -0.5}}, 
   {{31, -1}, {33, 1}}, {{31, 9}, {33, 11}}, {{38, 10.5}, {38.45, 9}}
 }
]

insira a descrição da imagem aqui

Ruby, resposta de golfe

x,y,t,p,*m=gets.split.map &:to_f
u=q=Math.cos t
v=r=Math.sin t
loop{k=i=p
u=x+q*p
v=y+r*p
m.each_slice(4){|a,b,c,d|((a-u)*r-(b-v)*q)*((c-u)*r-(d-v)*q)>0?next: g=c-a
h=d-b
l=(h*(x-a)-g*(y-b))/(r*g-q*h)
f=(g*g+h*h)**0.5
t,k,i=g/f,h/f,l if l.abs>1e-9&&l/i<1}
i==p ?abort([u,v]*' '): p-=i
x+=q*i
y+=r*i
n=q*k-r*t
q-=2*n*k
r+=2*n*t}

Esta é basicamente uma tradução direta da solução Mathematica para Ruby, além de alguns jogos de golfe e garantir que ela atenda aos critérios de E / S.

Martin Ender
fonte
Como você faz o lazer cruzar o triângulo do espelho no final do primeiro exemplo?
precisa saber é o seguinte
1
@AJMansfield Há um pequeno buraco no triângulo, que você pode ver no início da animação.
Martin Ender
Seria ótimo se você pudesse escrever um parágrafo explicando como ele funciona.
23414 JeffSB
@JeffSB Eu documentei o código do Mathematica agora. A versão Ruby faz exatamente a mesma coisa com nomes de variáveis ​​obscuros e sem plotagem.
Martin Ender
@ MartinBüttner Obrigado. É interessante ver como as outras pessoas fazem isso. Você percebeu antes que isso acontecesse que tinha que excluir o último espelho do qual saltou? Eu não fiz, mas descobri isso em breve. Percebi o número muito pequeno no seu código e foi por isso que pedi para ver como ele funciona.
22414 JeffSB
18

Python 3 (421C 390C, 366C)

Use builtin.complexcomo vetor 2d. tão

dot = lambda a, b: (a.conjugate() * b).real
cross = lambda a, b: (a.conjugate() * b).imag

Para vencer a solução 368C Ruby, encontrei um método bastante compacto para calcular a reflexão de pontos ao longo de um espelho. E também usou álgebra complexa para reduzir mais caracteres. Eles podem ser facilmente encontrados no código não-destruído.

Aqui está a versão do golfe.

C=lambda a,b:(abs(a)**2/a*b).imag
J=1j
x,y,r,d,*a=map(float,input().split())
p=x+y*J
q=p+d*2.718281828459045**(r*J)
M=[]
while a:x,y,z,w,*a=a;M+=[(x+y*J,z-x+w*J-y*J)]
def T(m):x,y=m;d=C(y,r)+1e-9;t=C(y,x-p)/d;s=C(r,x-p)/d;return[1,t][(1e-6<t<1)*(0<s<1)]
while 1:
 r=q-p;m=f,g=min(M,key=T)
 if T(m)==1:break
 p+=r*T(m);q=(q/g-f/g).conjugate()*g+f
print(q.real,q.imag)

Ungolfed

# cross product of two vector
# abs(a)**2 / a == a.conjugate()
cross = lambda a, b: (abs(a)**2 / a * b).imag
# Parse input
x, y, angle, distance, *rest = map(float, input().split())
start = x + y * 1j
# e = 2.718281828459045
# Using formula: e**(r*j) == cos(r) + sin(r) * j
end = start + distance * 2.718281828459045 ** (angle * 1j)
mirrors = []
while rest:
    x1, y1, x2, y2, *rest = rest
    # Store end point and direction vector for this mirror
    mirrors.append((x1 + y1 * 1j, (x2 - x1) + (y2 - y1) * 1j))

def find_cross(mirror):
    # a: one end of mirror
    # s: direction vector of mirror
    a, s = mirror
    # Solve (t, r) for equation: start + t * end == a + r * s
    d = cross(s, end - start) + 1e-9 # offset hack to "avoid" dividing by zero
    t = cross(s, a - start) / d
    r = cross(end - start, a - start) / d
    return t if 1e-6 < t < 1 and 0 < r < 1 else 1

def reflect(p, mirror):
    a, s = mirror
    # Calculate reflection point:
    #  1. Project r = p - a onto a coordinate system that use s as x axis, as r1.
    #  2. Take r1's conjugate as r2.
    #  3. Recover r2 to original coordinate system as r3
    #  4. r3 + a is the final result
    #
    # So we got conjugate((p - a) * conjugate(s)) / conjugate(s) + a
    # which can be reduced to conjugate((p - a) / s) * s + a
    return ((p - a) / s).conjugate() * s + a

while 1:
    mirror = min(mirrors, key=find_cross)
    if find_cross(mirror) == 1:
        break
    start += (end - start) * find_cross(mirror)
    end = reflect(end, mirror)
print(end.real, end.imag)

Bônus: HTML, Coffeescript, Ajuste e cálculo em tempo real

Ou seja, você arrasta quaisquer pontos finais (ou lazer, mirros) e a trilha é renderizada. Ele também suporta dois tipos de entrada, o descrito na pergunta e o usado por @Martin Büttner.

A escala também é ajustada automaticamente.

Por enquanto não tem animação. Talvez eu melhore depois. No entanto, arraste os pontos brancos e você poderá ver outro tipo de animação. Experimente online aqui você mesmo, é engraçado!

Todo o projeto pode ser encontrado aqui

caso 1 caso 2

Atualizar

Aqui eu forneço um caso interessante:

0 0.6 -0.0002 500.0 0.980785280403 -0.195090322016 1.0 0.0 1.0 0.0 0.980785280403 0.195090322016 0.980785280403 0.195090322016 0.923879532511 0.382683432365 0.923879532511 0.382683432365 0.831469612303 0.55557023302 0.831469612303 0.55557023302 0.707106781187 0.707106781187 0.707106781187 0.707106781187 0.55557023302 0.831469612303 0.55557023302 0.831469612303 0.382683432365 0.923879532511 0.382683432365 0.923879532511 0.195090322016 0.980785280403 0.195090322016 0.980785280403 6.12323399574e-17 1.0 6.12323399574e-17 1.0 -0.195090322016 0.980785280403 -0.195090322016 0.980785280403 -0.382683432365 0.923879532511 -0.382683432365 0.923879532511 -0.55557023302 0.831469612303 -0.55557023302 0.831469612303 -0.707106781187 0.707106781187 -0.707106781187 0.707106781187 -0.831469612303 0.55557023302 -0.831469612303 0.55557023302 -0.923879532511 0.382683432365 -0.923879532511 0.382683432365 -0.980785280403 0.195090322016 -0.980785280403 0.195090322016 -1.0 1.22464679915e-16 -1.0 1.22464679915e-16 -0.980785280403 -0.195090322016 -0.980785280403 -0.195090322016 -0.923879532511 -0.382683432365 -0.923879532511 -0.382683432365 -0.831469612303 -0.55557023302 -0.831469612303 -0.55557023302 -0.707106781187 -0.707106781187 -0.707106781187 -0.707106781187 -0.55557023302 -0.831469612303 -0.55557023302 -0.831469612303 -0.382683432365 -0.923879532511 -0.382683432365 -0.923879532511 -0.195090322016 -0.980785280403 -0.195090322016 -0.980785280403 -1.83697019872e-16 -1.0 -1.83697019872e-16 -1.0 0.195090322016 -0.980785280403 0.195090322016 -0.980785280403 0.382683432365 -0.923879532511 0.382683432365 -0.923879532511 0.55557023302 -0.831469612303 0.55557023302 -0.831469612303 0.707106781187 -0.707106781187 0.707106781187 -0.707106781187 0.831469612303 -0.55557023302 0.831469612303 -0.55557023302 0.923879532511 -0.382683432365 0.923879532511 -0.382683432365 0.980785280403 -0.195090322016

E o resultado é: círculo

Raio
fonte
-1 não atende às especificações de entrada ou saída.
Peter Taylor
@ Ray Como resposta bônus, tudo bem. Ele deve atender exatamente às especificações para se tornar a resposta do código-golfe.
23814 Calvin's Hobbies
@PeterTaylor Conheça as especificações agora.
Raio
É muito legal como você pode mover os espelhos! O seu é o meu primeiro voto +1.
21414 JeffSB #
17

JavaScript HTML, 10.543, 947 889

Corrigi um bug e verifiquei se a saída atende às especificações da pergunta. A página da web abaixo tem a versão para golfe e também a versão gráfica do bônus. Também corrigi um erro apontado pelo @Ray que salvava 58 caracteres. (Obrigado Ray.) Você também pode executar o código em um console JavaScript. (Agora estou usando um laser verde de 2 mW.)

Código Golf

a=prompt().split(" ").map(Number);M=Math,Mc=M.cos,Ms=M.sin,P=M.PI,T=2*P,t=true;l=new S(a[0],a[1],a[0]+a[3]*Mc(a[2]),a[1]+a[3]*Ms(a[2]));m=[];for(i=4;i<a.length;)m.push(new S(a[i++],a[i++],a[i++],a[i++]));f=-1;for(;;){var h=!t,d,x,y,n,r={};for(i=0;i<m.length;i++)if(i!=f)if(I(l,m[i],r))if(!h||r.d<d){h=t;d=r.d;x=r.x;y=r.y;n=i}if(h){l.a=x;l.b=y;l.e-=d;l.f=2*(m[f=n].f+P/2)-(l.f+P);l.c=l.a+l.e*Mc(l.f);l.d=l.b+l.e*Ms(l.f);}else break;}alert(l.c+" "+l.d);function S(a,b,c,d){this.a=a;this.b=b;this.c=c;this.d=d;this.e=D(a,b,c,d);this.f=M.atan2(d-b,c-a)}function D(a,b,c,d){return M.sqrt((a-c)*(a-c)+(b-d)*(b-d))}function I(l,m,r){A=l.a-l.c,B=l.b-l.d,C=m.a-m.c,L=m.b-m.d,E=l.a*l.d-l.b*l.c,F=m.a*m.d-m.b*m.c,G=A*L-B*C;if(!G)return!t;r.x=(E*C-A*F)/G;r.y=(E*L-B*F)/G;H=r.d=D(l.a,l.b,r.x,r.y),O=D(l.c,l.d,r.x,r.y),J=D(m.a,m.b,r.x,r.y),K=D(m.c,m.d,r.x,r.y);return(H<l.e)&&(O<l.e)&&(J<m.e)&&(K<m.e);} 

Entrada

1 1 7.50492 17 4.8 6.3 6.2 5.3 1.5 4.8 3.5 6 6.3 1.8 7.1 3

Saída

14.743305098514739 3.759749038188634


Você pode testá-lo aqui: http://goo.gl/wKgIKD

insira a descrição da imagem aqui

Explicação

O código na página da web é comentado. Basicamente, calculo a interseção do laser com cada espelho, assumindo que o laser e os espelhos são infinitamente longos. Então eu verifico se a interseção está dentro do comprimento finito do espelho e do laser. Então pego a interseção mais próxima, movo o laser para esse ponto e continuo até que o laser perca todos os espelhos.

Projeto muito divertido. Obrigado por fazer esta pergunta!

Código legível

// a = input array
// M = Math, Mc = M.cos, Ms = M.sin, P=M.PI, T=2*P, t=true
// l = laser segment
// m = array of mirror segments
// i = loop variable
// S = segment class (this.a=x1,b=y1,c=x2,d=y2,e=len,f=theta)
// D = distance function
// I = intersect function
// f = last mirror bounced from
// h = hits a mirror
// n = next intersecing mirror
// d = distance to mirror
// x = intersection point x
// y = intersection point y
// r = mirror intersection result (d,x,y)
// b = number of bounces (FOR DEBUGGING)
// A,B,C,E,F,G,H,J,K,L,O temp variables
// s = laser segment array

// get input array
var a = prompt().split(" ").map(Number);

// some constants
var M = Math, Mc = M.cos, Ms = M.sin, P = M.PI, T = 2 * P, t = true;

// laser segment
var l = new S(a[0], a[1], a[0] + a[3] * Mc(a[2]), a[1] + a[3] * Ms(a[2])), s = [];

// mirror segments
var m = []; for (var i = 4; i < a.length;) m.push(new S(a[i++], a[i++], a[i++], a[i++]));

// bounce until miss
var f = -1, b = 0; for (; ;) {

    // best mirror found
    var h = !t, d, x, y, n, r = {};

    // loop through mirrors, skipping last one bounced from
    for (var i = 0; i < m.length; i++)
        if (i != f)
            if (I(l, m[i], r))
                if (!h || r.d < d) { h = t; d = r.d; x = r.x; y = r.y; n = i }

    // a mirror is hit
    if (h) {

        // add to draw list, inc bounces
        s.push(new S(l.a, l.b, x, y)); b++;

        // move and shorten mirror
        l.a = x; l.b = y; l.e -= d;

        // calculate next angle
        l.f = 2 * (m[f = n].f + P / 2) - (l.f + P);

        // laser end point
        l.c = l.a + l.e * Mc(l.f); l.d = l.b + l.e * Ms(l.f);

    } else {

        // add to draw list, break
        s.push(new S(l.a, l.b, l.c, l.d));
        break;
    }
}
// done, print result
alert("X = " + l.c.toFixed(6) + ",  Y = " + l.d.toFixed(6) + ",  bounces = " + b);
PlotResult();

// segment class
function S(a, b, c, d) { this.a = a; this.b = b; this.c = c; this.d = d; this.e = D(a, b, c, d); this.f = M.atan2(d - b, c - a) }

// distance function
function D(a, b, c, d) { return M.sqrt((a - c) * (a - c) + (b - d) * (b - d)) }

// intersect function
function I(l, m, r) {

    // some values
    var A = l.a - l.c, B = l.b - l.d, C = m.a - m.c, L = m.b - m.d, E = l.a * l.d - l.b * l.c, F = m.a * m.d - m.b * m.c, G = A * L - B * C;

    // test if parallel
    if (!G) return !t;

    // intersection
    r.x = (E * C - A * F) / G; r.y = (E * L - B * F) / G;

    // distances
    var H = r.d = D(l.a, l.b, r.x, r.y), O = D(l.c, l.d, r.x, r.y), J = D(m.a, m.b, r.x, r.y), K = D(m.c, m.d, r.x, r.y);

    // return true if intersection is with both segments
    return (H < l.e) && (O < l.e) && (J < m.e) && (K < m.e);
}
JeffSB
fonte
Muito legal, eu amo a interface da web. Outra entrada divertido: 0 0 0.4 100 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1.
Hobbies de Calvin
1
Onde está o programa atual?
Peter Taylor
Está na página da web aqui: goo.gl/wKgIKD
JeffSB
As respostas neste site geralmente devem incluir todo o código necessário para responder à pergunta. No caso desta pergunta, é um programa que lê de stdin e grava em stdout. Além disso, como é uma questão de código-golfe, você deve minimizar o código o máximo possível: removendo comentários e espaços em branco desnecessários e usando identificadores de um caractere sempre que possível.
Peter Taylor
@JeffSB Este envio é válido para a resposta de bônus, mas não para a resposta aceita. (Embora você pode querer incluir todo o seu código.)
de Calvino Hobbies
6

Python - 765

Bom desafio. Esta é a minha solução que obtém a entrada do stdin e produz o stdout. Usando o exemplo de @Martin Büttner:

python mirrors.py 1 1 70.00024158332184 95 4.8 5.3 6.2 4.3 1.5 4.8 3.5 6 6.3 1.8 7.1 3     5 1 4 3 7 6 5 6.1 8.5 2.965 8.4 2 8.5 3.035 8.6 4 8.4 2 10.5 3 8.6 4 10.5 3

7.7094468894 3.84896396639

Aqui está o código do golfe:

import sys;from cmath import*
l=[float(d) for d in sys.argv[1:]];c=180/pi;p=phase;q=exp;u=len;v=range
def o(l):
 L=l[0]+1j*l[1];t=l[2]/c;D=l[3];S=[L,L+D*q(1j*t)];N=[[l[i]+1j*l[i+1],l[i+2]+1j*l[i+3]] for i in v(4,u(l),4)];a=[];b=[]
 for M in N:
  z=S[1].real-S[0].real;y=M[0].real-M[1].real;x=S[1].imag-S[0].imag;w=M[0].imag-M[1].imag;d=M[0].real-S[0].real;f=M[0].imag-S[0].imag;g=z*w-x*y;h=w/g;j=-y/g;m=-x/g;n=z/g;a.append(h*d+j*f);b.append(m*d+n*f)
 i=1;e=-1
 for k in v(u(N)):
  if 1>b[k]>0:
   if i>a[k]>1e-14:
    i=a[k];e=k
 if e>-1:
  L=S[0]+i*(S[1]-S[0]);M=N[e];l[0]=L.real;l[1]=L.imag;l[2]=c*(p(M[1]-M[0])+p(q(1j*p(M[1]-M[0]))*q(1j*-t)));l[3]=D*(1-i)
  return l
 J=S[0]+i*(S[1]-S[0]) 
 print J.real, J.imag   
 return J.real, J.imag   
while u(l)>2:
 l=o(l)

E aqui está o código não destruído com uma figura de bônus

espelhos

import sys
from cmath import*
import matplotlib
import matplotlib.pyplot as plt
l=[float(d) for d in sys.argv[1:]]
def nextpos(l):
    L=l[0]+1j*l[1]
    t=l[2]/180*pi
    D=l[3]
    S=[L,L + D * exp(1j * t)]
    MM=[[l[i]+1j*l[i+1],l[i+2]+1j*l[i+3]] for i in range(4,len(l), 4)]    
    a=[]
    b=[]
    for M in MM:
        #determine intersections
        a11 = S[1].real-S[0].real 
        a12 = M[0].real-M[1].real
        a21 = S[1].imag-S[0].imag
        a22 = M[0].imag-M[1].imag
        b1  = M[0].real-S[0].real
        b2  = M[0].imag-S[0].imag
        deta = a11*a22-a21*a12
        ai11 = a22/deta
        ai12 = -a12/deta
        ai21 = -a21/deta
        ai22 = a11/deta        
        a.append(ai11*b1+ai12*b2)
        b.append(ai21*b1+ai22*b2)
    #determine best intersection    
    mina = 1
    bestk = -1
    for k in range(len(MM)):
        if 1>b[k]>0:
            if mina>a[k]>1e-14:
                mina=a[k]
                bestk=k
    if bestk>-1:
        #determine new input set
        L=S[0]+mina*(S[1]-S[0])
        M=MM[bestk]
        l[0]=L.real
        l[1]=L.imag
        angr=phase(exp(1j*phase(M[1]-M[0]))*exp(1j *-t))
        l[2]=180/pi*(phase(M[1]-M[0])+angr)
        l[3]=D*(1-mina)
        return l
    J= S[0]+mina*(S[1]-S[0]) 
    print J.real, J.imag   
    return J.real, J.imag   
#plotting
xL = [l[0]]
yL = [l[1]]
fig = plt.figure()
ax = fig.add_subplot(111,aspect='equal')
for i in range(4,len(l), 4):
    plt.plot([l[i],l[i+2]],[l[i+1],l[i+3]], color='b')
while len(l)>2:
    #loop until out of lasers reach
    l = nextpos(l)
    xL.append(l[0])
    yL.append(l[1])
plt.plot(xL,yL, color='r')
plt.show()
Willem
fonte
-1: não atende às especificações. A saída especificada é dois números, não dois números e uma imagem.
Peter Taylor
@PeterTaylor Então você quer dizer stdin / stdout?
Raio
@ willem Como resposta bônus, tudo bem. Ele deve atender exatamente às especificações para se tornar a resposta do código-golfe.
Hobbies de Calvin
Atualizei o código
Willem
Observe que sys.argvnão é stdin.
Raio
6

Matlab (388)

Enredo

enredo plot2

Conceitos

Pontos de reflexão

Para calcular os pontos de reflexão, basicamente precisamos interceptar duas linhas retas. Um com o ponto p0 e o vetor v, o outro entre os dois pontos p1, p2. Portanto, a equação a ser resolvida é (s, t são parâmetros): p0 + t v = s p1 + (1-s) * p2.

O parâmetro s é então uma coordenada barricêntrica do espelho, portanto, se 0

Espelhamento

O espelhamento de v é bem simples. Vamos supor que || v || = || n || = 1 onde n é o vetor normal do espelho atual. Então você pode simplesmente usar a fórmula v: = v-2 ** n onde <,> é o produto escalar.

Validade do passo

Ao computar o espelho 'válido' mais próximo, precisamos considerar alguns critérios que o tornam válido. Primeiro, o ponto de interceptação do espelho deve estar entre os dois pontos de extremidade, portanto deve ser 0

Programa

p = [1 1 430 17 4.8 5.3 6.2 4.3 1.5 4.8 3.5 6 6.3 1.8 7.1 3];
hold on
grid on
for i=2:length(p)/4
    i = i*4+1-4
    p2=p(i+2:i+3)';
    p1=p(i:i+1)'
    plot([p1(1),p2(1)],[p1(2),p2(2)],'r-')
    text(p1(1),p1(2),['m' num2str((i+3)/4-1)])
end
%hold off

history = p(1:2)';


currentPosition = p(1:2)';%current
currentDirection=[cos(p(3)*pi/180);sin(p(3)*pi/180)];
while p(4)>0%as long as we do not have finished our distance
   distanceBuffer = Inf%distance next point buffer
   intersectionBuffer = NaN %next point buffer
   for i=2:length(p)/4%number of mirrors
       i = i*4+1-4 %i is now the index of the firs coordinate of the mirror
       %calculate all crosspoints
       p2=p(i+2:i+3)';
       mirrorVector = p2-p(i:i+1)';
       % idea: p0+s*currentDirection = s*p1+(1-s)*p2 solving for s,t
       r=[currentDirection,mirrorVector]\[p2-currentPosition];
       if r(1)<distanceBuffer && 0.001< r(1) && r(1)<p(4) &&0<=r(2) && r(2)<=1 %search for the nearest intersection
           distanceBuffer=r(1);
           intersectionBuffer=r(1)*currentDirection+currentPosition;
           mirrorBuffer = mirrorVector
       end
   end
   if distanceBuffer == Inf %no reachable mirror found
       endpoint = currentPosition+p(4)*currentDirection;
       counter = counter+1
       history = [history,endpoint];
       break
   else %mirroring takes place
       counter = counter+1
       history = [history,intersectionBuffer];
       currentPosition=intersectionBuffer;
       normal = [0,-1;1,0]*mirrorBuffer;%normal vector of mirror
       normal = normal/norm(normal)
       disp('arccos')
       currentDirection = currentDirection-2*(currentDirection'*normal)*normal;
       %v = v/norm(v)
       p(4)=p(4)-distanceBuffer
   end
end
history
plot(history(1,:),history(2,:))

Pouco golfe (388)

p=[1 1 430 17 4.8 5.3 6.2 4.3 1.5 4.8 3.5 6 6.3 1.8 7.1 3];
c=p(1:2)'
b=pi/180
v=[cos(p(3)*b);sin(p(3)*b)]
f=p(4)
while f>0
q=Inf
for i=2:length(p)/4
b=p(i+2:i+3)'
u=b-p(i:i+1)'
r=[v,u]\[b-c]
s=r(1)
t=r(2)
if s<q&&0.001<s&&s<f&&0<=t&&t<=1 
q=s
n=s*v+c
m=u
end
end
if q==Inf
disp(c+f*v)
break
else 
c=n
g=[0,-1;1,0]*m
g=g/norm(g)
v=v-2*(v'*g)*g
f=f-q
end
end
flawr
fonte
Isso me leva de volta. Minha primeira experiência com o Matlab foi modelar o caminho de um laser através de um sistema de espelhos e lentes enquanto eu estava em uma posição de pesquisa durante meus estudos de graduação. Seus gráficos, em particular, parecem muito familiares. :) Enfim, apenas um aparte. Bom trabalho aqui, +1.
Alex A.
Haha obrigado! Eu só não me lembro Eu fiz isso quando eu vi o seu comentário aparecer =)
flawr
Haha, então meu comentário provavelmente leva você de volta! (Para quando você postou isso.)
Alex A.