coloque os frascos na centrífuga

12

Esta questão se origina neste tópico do reddit pelo usuário do reddit taho_teg, mas é expandido para um 'quebra-cabeça' mais geral.

Você tem uma centrífuga com 24 furos para os frascos distribuídos uniformemente em um círculo ao redor do eixo central. Se você já possui vários frascos e deseja iniciar a centrífuga, verifique se eles são colocados de maneira equilibrada. Os únicos números de frascos que você não pode equilibrar são 1 e 23. Você pode, por exemplo, equilibrar 4, obviamente, mas também pode equilibrar 5 criando um 'triângulo' com 3 frascos e colocando os outros dois em dois locais opostos.

Objetivo

Você precisa escrever um programa que aceite o número de furos (que são distribuídos uniformemente em um círculo ao redor do eixo rotativo) da sua centrífuga como entrada e que produz uma lista de números de frascos que não podem ser balanceados na centrífuga.

Você precisa fazer o cálculo e não pode simplesmente codificar as soluções pré-computadas.

A entrada e a saída devem ser implementadas de forma que o código do programa não precise ser alterado para chamar o programa para entradas diferentes. Também é aceitável escrever uma função (ou uma construção semelhante no seu idioma) que possa ser chamada através de um console.

Lembre-se também de que, se você tiver 6 furos na centrífuga, poderá centrifugar 2 e 3 frascos, mas não poderá equilibrar 5, pois o 'triângulo' e os dois opostos se sobrepõem em um ponto. Outro exemplo seria: n = 15, você não pode equilibrar 11 frascos, você pode equilibrar 6 e 5 frascos, mas a combinação dessas soluções se sobreporá (é claro que esse ainda não é o critério de que é impossível fazê-lo).

Atualizar

Parece que algumas pessoas não entenderam o exemplo dado, então fiz um gráfico aqui. POR FAVOR, escreva uma breve descrição de como seu algoritmo funciona, bem como alguns exemplos de saídas para verificação. Inclua os seguintes exemplos:

n = 1, 6, 10, 24, 63, 100 = 10^2, 163 (prime), 40320 = 8!, 65536=2^2^2^2^2, 105953 (prime)

Observe que 40320 e 65536 produzirão listas enormes; talvez seja uma boa idéia indicar apenas o tamanho dessas listas.

Se você conhece alguns números interessantes para adicionar a essa lista, entre em contato! O algoritmo deve funcionar pelo menos até n = 1'000'000. 5 frascos colocados equilibrados em uma centrífuga de 24 furos

Exemplo de saídas:

Estes são alguns exemplos de resultados - mas talvez com defeito, porque eu apenas os calculei manualmente.

1: 1
2: 1
3: 1,2
4: 1,3
5: 1,2,3,4
6: 1,5
7: 1,2,3,4,5,6
8: 1,3,5,7
9: 1,2,4,5,7,8
10:1,3,7,9
11:1,2,3,4,5,6,7,8,9,10
12:1,11
13:1,2,3,4,5,6,7,8,9,10,11,12
14:1,3,5,9,11,13
15:1,2,4,7,8,11,13,14

Sugestão

Se você tiver uma centrífuga com n buracos, e você não pode equilibrar por exemplo, 6 frascos, você também não será capaz de blance n-6 frascos - é basicamente a mesma tarefa de equilíbrio m frascos em uma centrífuga vazio ou para equilibrar uma centrífuga preenchido tirando m frascos. Então, se você tiver o número m na sua lista, também precisará incluir nm .

flawr
fonte
3
Não devemos precisar que os frascos sejam espaçados uniformemente para ficar equilibrados? Não vejo como o exemplo de 5 frascos em 24 buracos satisfaz isso. Uma "metade" da centrífuga terá mais frascos do que a outra metade. Isso soa como a definição de desequilibrado para mim.
Thorn
6
Penso que por "equilibrado" o que se quer dizer é que o centro de massa dos frascos está verticalmente acima ou abaixo do centro de massa da centrífuga.
Peter Taylor
2
@ Thorn você precisa pensar em duas dimensões, não em uma. As coordenadas dos 3 primeiros frascos são (0,1), (-sqrt (3) / 2, -1 / 2) e (+ sqrt (3) / 2, -1 / 2.) A disposição dos 5 frascos não é simétrico (além de possivelmente um plano de espelho), mas é equilibrado. É bastante comum que as rodas dos carros tenham diferentes números de raios e porcas (novamente, não simétricas, mas totalmente equilibradas porque os raios formam um conjunto equilibrado e as porcas formam um conjunto equilibrado.) Pesquise no Google 7 spoke wheele dê uma olhada.
Level River St
2
"O algoritmo deve funcionar pelo menos até n = 1'000'000." Só para ter certeza: você realmente quis dizer o algoritmo ou o programa? Meu algoritmo funciona tão bem para n = 1.000.000 quanto para n = 10. O programa, no entanto, tem alguns problemas.
Wrzlprmft
1
@ edc65. equilibrado! = simétrico ... contanto que você divida seus frascos em subgrupos, onde cada subgrupo está em um estado simétrico, a força externa de todos os subgrupos estará em um estado equilibrado.
Eoin Campbell

Respostas:

5

Sábio - 102 104/115

Por que usar a teoria dos números, quando há força bruta?

v=lambda n:[j for j in range(n+1)if all(sum(e^(i*2*I*pi/n)for i in c)for c in Combinations(range(n),j))]

Para um determinado número de frascos, isso abrange todas as maneiras de posicionar os frascos e calcula seu centro de massa usando aritmética complexa. Se o centro de massa for zero para nenhuma dessas maneiras, o número será retornado.

Infelizmente, isso não funciona em certos casos (10,14), porque o Sage falha ao simplificar algumas expressões para zero (o que pode estar relacionado a esse bug ). Pode-se considerar isso uma falha do intérprete e não do programa e ainda assim dizer que o algoritmo e o programa estão corretos.

A alternativa de 113 caracteres a seguir depende de flutuadores em vez de símbolos e não sofre desses problemas:

v=lambda n:[j for j in range(n+1)if all(abs(sum(exp(i*2j*pi/n)for i in c))>1e-9for c in Combinations(range(n),j))]

Teste a saída da versão de 113 caracteres ( for n in range(14): print n,v(n)):

0 []
1 [1]
2 [1]
3 [1, 2]
4 [1, 3]
5 [1, 2, 3, 4]
6 [1, 5]
7 [1, 2, 3, 4, 5, 6]
8 [1, 3, 5, 7]
9 [1, 2, 4, 5, 7, 8]
10 [1, 3, 7, 9]
11 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
12 [1, 11]
13 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
14 [1, 3, 5, 9, 11, 13]

Eu não queria esperar o tempo de execução mais alto n.


Isso se origina da seguinte solução Python. Aritmética exata e não ter que importar alguns módulos é algo bastante.

Python - 173 154 156

from itertools import*
from cmath import*
v=lambda n:[j for j in range(n+1)if all(abs(sum(exp(i*2j*pi/n)for i in c))>1e-9for c in combinations(range(n),j))]

Saída de teste desta variante ( for n in range(24): print n,v(n)):

0 []
1 [1]
2 [1]
3 [1, 2]
4 [1, 3]
5 [1, 2, 3, 4]
6 [1, 5]
7 [1, 2, 3, 4, 5, 6]
8 [1, 3, 5, 7]
9 [1, 2, 4, 5, 7, 8]
10 [1, 3, 7, 9]
11 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
12 [1, 11]
13 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
14 [1, 3, 5, 9, 11, 13]
15 [1, 2, 4, 7, 8, 11, 13, 14]
16 [1, 3, 5, 7, 9, 11, 13, 15]
17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
18 [1, 17]
19 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
20 [1, 3, 17, 19]
21 [1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]
22 [1, 3, 5, 7, 9, 13, 15, 17, 19, 21]
23 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
24 [1, 23]

Eu não queria esperar o tempo de execução mais alto n.

Wrzlprmft
fonte
Eu gosto da idéia de usar as raízes das unidades complexas! Você poderia mostrar alguns exemplos de resultados apenas para verificação? Postei algumas sugestões.
flawr
4

Lua - 197

Um método de força não bruta, cria uma lista de fatores e os exclui. Ele também exclui números que podem ser obtidos com a adição desses fatores, desde que o maior fator usado seja menor que a quantidade de furos não preenchidos. Um é sempre impresso e não é usado no algoritmo.

i=io.read("*n")f={}print(1)for z=2,i do
x=z
if i%x<1 then
table.insert(f,1,x)end
for q=1,#f do
y=f[q]x=x*math.min(1,z%y)while x>=y and x-1~=y and y<=i-z do x=x-y end
end
if x>0 then print(z)end
end

Exemplo de saída: (algumas colocam como intervalos, para não exceder o limite de caracteres)

1: 1

6: 1,5

10:1,3,7,9

24:1,23

63:1,2,4,5,8,11,13,17,20,22,23,25,26,29,32,34,38,41,44,47,50,53,58,59,61,62

100:1,3,13,23,33,43,53,63,73,83,93,97,99

163:1-162

40320:1,11,13,17,19,29,31,37,41,43,61,71,73,97,113,121,127,139,157,169,179,181,191,193,209,211,221,223,241,251,253,263,269,271,277,281,289,299,307,313,331,337,347,349,353,361,373,377,379,397,401,403,409,421,431,433,437,439,449,461,467,473,479,481,491,493,499,517,521,523,529,533,541,547,571,577,587,589,593,601,607,613,617,619,631,641,653,659,671,673,683,689,691,697,701,703,709,713,731,733,737,739,751,757,761,769,781,793,811,817,841,851,853,857,859,869,871,877,881,883,907,913,929,937,953,961,971,977,979,989,991,997,1003,1009,1019,1021,1027,1033,1037,1039,1049,1051,1069,1073,1079,1081,1093,1121,1133,1139,1151,1153,1163,1171,1177,1181,1189,1193,1201,1213,1217,1223,1237,1243,1249,1261,1271,1273,1277,1279,1289,1291,1297,1301,1303,1321,1331,1333,1357,1361,1363,1369,1373,1381,1387,1409,1417,1429,1441,1451,1453,1457,1459,1469,1471,1481,1483,1489,1501,1511,1513,1531,1537,1553,1567,1579,1597,1601,1609,1619,1621,1633,1643,1649,1651,1661,1663,1681,1691,1693,1697,1699,1709,1711,1717,1721,1723,1741,1751,1753,1777,1793,1801,1807,1819,1837,1849,1859,1861,1871,1873,1889,1891,1901,1903,1921,1931,1933,1937,1949,1951,1957,1961,1963,1969,1991,1993,2011,2017,2027,2029,2033,2041,2047,2053,2057,2059,2077,2081,2087,2089,2101,2113,2129,2137,2143,2161,2171,2173,2197,2207,2209,2221,2227,2237,2239,2251,2257,2269,2273,2281,2297,2311,2321,2353,2369,2381,2419,2431,2449,2461,2477,2491,2503,2509,2521,2531,2533,2537,2539,2549,2551,2557,2561,2563,2581,2591,2593,2617,2633,2641,2647,2659,2677,2689,2699,2701,2707,2713,2717,2719,2729,2731,2749,2753,2759,2761,2773,2801,2809,2827,2833,2843,2857,2867,2869,2879,2881,2893,2897,2899,2909,2911,2917,2921,2923,2929,2941,2951,2953,2971,2977,2993,3001,3007,3019,3037,3041,3049,3061,3071,3083,3089,3091,3103,3121,3131,3133,3149,3151,3161,3169,3179,3181,3187,3193,3211,3217,3229,3233,3251,3253,3257,3259,3277,3281,3289,3293,3301,3313,3317,3319,3329,3341,3347,3359,3361,3371,3373,3377,3379,3389,3391,3397,3401,3403,3421,3431,3433,3457,3473,3481,3487,3499,3517,3529,3539,3541,3551,3553,3569,3571,3581,3583,3601,3611,3613,3623,3629,3631,3637,3641,3649,3659,3667,3673,3691,3697,3707,3709,3713,3721,3733,3737,3739,3757,3761,3763,3769,3781,3791,3793,3797,3799,3809,3821,3827,3833,3839,3841,3851,3853,3859,3877,3881,3883,3889,3893,3901,3907,3931,3937,3947,3949,3953,3961,3967,3973,3977,3979,3991,4001,4013,4019,4031,4033,4043,4049,4051,4057,4061,4063,4069,4073,4093,4097,4103,4117,4129,4153,4159,4171,4177,4187,4189,4201,4211,4213,4223,4237,4241,4243,4253,4267,4273,4283,4297,4301,4303,4309,4313,4321,4331,4337,4339,4363,4369,4379,4381,4387,4393,4409,4411,4427,4429,4433,4441,4447,4453,4463,4469,4471,4477,4481,4493,4499,4511,4513,4517,4523,4537,4541,4553,4561,4577,4601,4607,4609,4619,4621,4637,4649,4661,4673,4691,4703,4717,4721,4733,4751,4757,4769,4787,4793,4801,4811,4813,4817,4829,4841,4853,4859,4877,4883,4889,4897,4901,4913,4919,4939,4957,4961,4973,4979,4997,5003,5009,5017,5021,5027,5041,5051,5053,5057,5059,5069,5071,5077,5081,5083,5101,5111,5113,5137,5153,5161,5167,5179,5197,5209,5219,5221,5231,5233,5249,5251,5261,5263,5281,5291,5293,5303,5309,5311,5317,5321,5329,5339,5347,5353,5371,5377,5387,5389,5393,5401,5413,5417,5419,5437,5441,5443,5449,5461,5471,5473,5477,5479,5489,5501,5507,5513,5519,5521,5531,5533,5539,5557,5561,5563,5569,5573,5581,5587,5611,5617,5627,5629,5633,5641,5647,5653,5657,5659,5671,5681,5693,5699,5711,5713,5723,5729,5731,5737,5741,5743,5749,5753,5771,5773,5777,5779,5791,5797,5801,5809,5821,5833,5851,5857,5881,5899,5917,5921,5939,5941,5951,5953,5963,5969,5981,5983,6001,6011,6023,6029,6031,6037,6049,6059,6061,6067,6073,6091,6107,6109,6113,6121,6131,6133,6137,6157,6161,6163,6169,6173,6191,6193,6197,6199,6221,6227,6233,6239,6241,6253,6257,6259,6277,6281,6283,6289,6301,6313,6331,6337,6347,6353,6361,6367,6373,6379,6401,6413,6431,6443,6449,6451,6457,6463,6469,6473,6481,6491,6493,6497,6499,6509,6511,6521,6523,6529,6541,6551,6553,6571,6577,6593,6611,6613,6617,6619,6631,6637,6641,6649,6667,6673,6689,6697,6721,6731,6733,6737,6739,6749,6751,6757,6761,6763,6781,6791,6793,6817,6833,6841,6847,6859,6877,6889,6899,6901,6911,6913,6929,6931,6941,6943,6961,6971,6973,6983,6989,6991,6997,7001,7009,7019,7027,7033,7051,7057,7067,7069,7073,7081,7093,7097,7099,7117,7121,7123,7129,7141,7151,7153,7157,7159,7169,7181,7187,7193,7199,7201,7211,7213,7219,7237,7241,7243,7249,7253,7261,7267,7291,7297,7307,7309,7313,7321,7327,7333,7337,7339,7351,7361,7373,7379,7391,7393,7403,7409,7411,7417,7421,7423,7429,7433,7451,7453,7457,7459,7471,7477,7481,7489,7501,7513,7531,7537,7561,7571,7573,7577,7579,7589,7591,7597,7601,7603,7627,7633,7649,7657,7673,7681,7691,7697,7699,7709,7711,7717,7723,7729,7739,7741,7747,7753,7757,7759,7769,7771,7789,7793,7799,7801,7813,7841,7853,7859,7871,7873,7883,7891,7897,7901,7909,7913,7921,7933,7937,7943,7957,7963,7969,7981,7991,7993,7997,7999,8009,8011,8017,8021,8023,8041,8051,8053,8077,8081,8083,8089,8093,8101,8107,8129,8137,8149,8161,8177,8191,8203,8209,8219,8221,8233,8243,8257,8269,8273,8287,8299,8317,8327,8329,8333,8341,8353,8363,8369,8371,8377,8401,8411,8413,8417,8419,8437,8441,8443,8459,8461,8467,8473,8479,8497,8501,8503,8509,8513,8531,8537,8543,8557,8563,8569,8579,8581,8587,8593,8597,8599,8609,8611,8641,8651,8653,8657,8669,8671,8677,8681,8683,8689,8717,8723,8737,8747,8749,8753,8761,8767,8773,8777,8779,8797,8801,8803,8809,8821,8833,8849,8857,8881,8917,8921,8923,8929,8933,8941,8947,8971,8977,8989,8993,9001,9017,9041,9043,9049,9053,9061,9067,9073,9083,9089,9091,9097,9101,9103,9109,9113,9133,9137,9143,9157,9169,9197,9203,9209,9217,9227,9229,9241,9253,9257,9259,9277,9281,9287,9301,9307,9313,9337,9341,9343,9349,9353,9361,9367,9389,9397,9409,9419,9421,9427,9433,9437,9439,9449,9451,9469,9473,9479,9481,9493,9517,9521,9523,9529,9533,9547,9553,9577,9589,9601,9617,9631,9643,9649,9659,9661,9673,9683,9697,9707,9713,9727,9739,9757,9761,9763,9769,9773,9781,9787,9809,9817,9829,9841,9857,9871,9883,9889,9899,9901,9913,9923,9937,9949,9953,9967,9979,9997,10001,10009,10013,10021,10027,10033,10049,10057,10069,10081,10091,10093,10097,10099,10109,10111,10117,10121,10123,10141,10151,10153,10177,10193,10201,10207,10219,10237,10249,10259,10261,10271,10273,10289,10291,10301,10303,10321,10331,10333,10343,10349,10351,10357,10361,10369,10379,10387,10393,10411,10417,10427,10429,10433,10441,10453,10457,10459,10477,10481,10483,10489,10501,10511,10513,10517,10519,10529,10541,10547,10553,10559,10561,10571,10573,10579,10597,10601,10603,10609,10613,10621,10627,10651,10657,10667,10669,10673,10681,10687,10693,10697,10699,10711,10721,10733,10739,10751,10753,10763,10769,10771,10777,10781,10783,10789,10793,10811,10813,10817,10819,10831,10837,10841,10849,10861,10873,10891,10897,10921,10931,10933,10937,10939,10949,10951,10957,10961,10963,10987,10993,11009,11017,11033,11041,11051,11057,11059,11069,11071,11077,11083,11089,11099,11101,11107,11113,11117,11119,11129,11131,11149,11153,11159,11161,11173,11201,11213,11219,11231,11233,11243,11251,11257,11261,11269,11273,11281,11293,11297,11303,11317,11323,11329,11341,11351,11353,11357,11359,11369,11371,11377,11381,11383,11401,11411,11413,11437,11441,11443,11449,11453,11461,11467,11489,11497,11509,11521,11531,11533,11537,11539,11549,11551,11561,11563,11569,11581,11591,11593,11611,11617,11633,11647,11659,11677,11681,11689,11699,11701,11713,11723,11729,11731,11741,11743,11761,11771,11773,11777,11779,11789,11791,11797,11801,11803,11821,11831,11833,11857,11873,11881,11887,11899,11917,11929,11939,11941,11951,11953,11969,11971,11981,11983,12001,12011,12013,12017,12029,12031,12037,12041,12043,12049,12071,12073,12091,12097,12107,12109,12113,12121,12127,12133,12137,12139,12157,12161,12167,12169,12181,12193,12209,12217,12223,12241,12251,12253,12277,12287,12289,12301,12307,12317,12319,12331,12337,12349,12353,12361,12377,12391,12401,12433,12449,12461,12499,12511,12529,12541,12557,12571,12583,12589,12601,12611,12613,12617,12619,12629,12631,12637,12641,12643,12661,12671,12673,12697,12713,12721,12727,12739,12757,12769,12779,12781,12787,12793,12797,12799,12809,12811,12829,12833,12839,12841,12853,12881,12889,12907,12913,12923,12937,12947,12949,12959,12961,12973,12977,12979,12989,12991,12997,13001,13003,13009,13021,13031,13033,13051,13057,13073,13081,13087,13099,13117,13121,13129,13141,13151,13163,13169,13171,13183,13201,13211,13213,13229,13231,13241,13249,13259,13261,13267,13273,13291,13297,13309,13313,13331,13333,13337,13339,13357,13361,13369,13373,13381,13393,13397,13399,13409,13421,13427,13439,13441,13451,13453,13457,13459,13469,13471,13477,13481,13483,13501,13511,13513,13537,13553,13561,13567,13579,13597,13609,13619,13621,13631,13633,13649,13651,13661,13663,13681,13691,13693,13703,13709,13711,13717,13721,13729,13739,13747,13753,13771,13777,13787,13789,13793,13801,13813,13817,13819,13837,13841,13843,13849,13861,13871,13873,13877,13879,13889,13901,13907,13913,13919,13921,13931,13933,13939,13957,13961,13963,13969,13973,13981,13987,14011,14017,14027,14029,14033,14041,14047,14053,14057,14059,14071,14081,14093,14099,14111,14113,14123,14129,14131,14137,14141,14143,14149,14153,14171,14173,14177,14179,14191,14197,14201,14209,14221,14233,14251,14257,14281,14291,14293,14297,14299,14309,14311,14317,14321,14323,14347,14353,14369,14377,14393,14401,14411,14417,14419,14429,14431,14437,14443,14449,14459,14461,14467,14473,14477,14479,14489,14491,14509,14513,14519,14521,14533,14561,14573,14579,14591,14593,14603,14611,14617,14621,14629,14633,14641,14653,14657,14663,14677,14683,14689,14701,14711,14713,14717,14719,14729,14731,14737,14741,14743,14761,14771,14773,14797,14801,14803,14809,14813,14821,14827,14849,14857,14869,14881,14891,14893,14897,14899,14909,14911,14921,14923,14929,14941,14951,14953,14971,14977,14993,15007,15019,15037,15041,15049,15059,15061,15073,15083,15089,15091,15101,15103,15121,15131,15133,15137,15139,15149,15151,15157,15161,15163,15181,15191,15193,15217,15233,15241,15247,15259,15277,15289,15299,15301,15311,15313,15329,15331,15341,15343,15361,15371,15373,15377,15389,15391,15397,15401,15403,15409,15431,15433,15451,15457,15467,15469,15473,15481,15487,15493,15497,15499,15517,15521,15527,15529,15541,15553,15569,15577,15583,15601,15611,15613,15637,15647,15649,15661,15667,15677,15679,15691,15697,15709,15713,15721,15737,15751,15761,15793,15809,15821,15859,15871,15889,15901,15917,15931,15943,15949,15961,15971,15973,15977,15979,15989,15991,15997,16001,16003,16021,16031,16033,16057,16073,16081,16087,16099,16117,16129,16139,16141,16147,16153,16157,16159,16169,16171,16189,16193,16199,16201,16213,16241,16249,16267,16273,16283,16297,16307,16309,16319,16321,16333,16337,16339,16349,16351,16357,16361,16363,16369,16381,16391,16393,16411,16417,16433,16441,16447,16459,16477,16481,16489,16501,16511,16523,16529,16531,16543,16561,16571,16573,16589,16591,16601,16609,16619,16621,16627,16633,16651,16657,16669,16673,16691,16693,16697,16699,16717,16721,16729,16733,16741,16753,16757,16759,16769,16781,16787,16799,16801,16811,16813,16817,16819,16829,16831,16837,16841,16843,16861,16871,16873,16897,16913,16921,16927,16939,16957,16969,16979,16981,16991,16993,17009,17011,17021,17023,17041,17051,17053,17063,17069,17071,17077,17081,17089,17099,17107,17113,17131,17137,17147,17149,17153,17161,17173,17177,17179,17197,17201,17203,17209,17221,17231,17233,17237,17239,17249,17261,17267,17273,17279,17281,17291,17293,17299,17317,17321,17323,17329,17333,17341,17347,17371,17377,17387,17389,17393,17401,17407,17413,17417,17419,17431,17441,17453,17459,17471,17473,17483,17489,17491,17497,17501,17503,17509,17513,17533,17537,17543,17557,17569,17593,17599,17611,17617,17627,17629,17641,17651,17653,17663,17677,17681,17683,17693,17707,17713,17723,17737,17741,17743,17749,17753,17761,17771,17777,17779,17803,17809,17819,17821,17827,17833,17849,17851,17867,17869,17873,17881,17887,17893,17903,17909,17911,17917,17921,17933,17939,17951,17953,17957,17963,17977,17981,17993,18001,18017,18041,18047,18049,18059,18061,18077,18089,18101,18113,18131,18143,18157,18161,18173,18191,18197,18209,18227,18233,18241,18251,18253,18257,18269,18281,18293,18299,18317,18323,18329,18337,18341,18353,18359,18379,18397,18401,18413,18419,18437,18443,18449,18457,18461,18467,18481,18491,18493,18497,18499,18509,18511,18517,18521,18523,18541,18551,18553,18577,18593,18601,18607,18619,18637,18649,18659,18661,18671,18673,18689,18691,18701,18703,18721,18731,18733,18743,18749,18751,18757,18761,18769,18779,18787,18793,18811,18817,18827,18829,18833,18841,18853,18857,18859,18877,18881,18883,18889,18901,18911,18913,18917,18919,18929,18941,18947,18953,18959,18961,18971,18973,18979,18997,19001,19003,19009,19013,19021,19027,19051,19057,19067,19069,19073,19081,19087,19093,19097,19099,19111,19121,19133,19139,19151,19153,19163,19169,19171,19177,19181,19183,19189,19193,19211,19213,19217,19219,19231,19237,19241,19249,19261,19273,19291,19297,19321,19339,19357,19361,19379,19381,19391,19393,19403,19409,19421,19423,19441,19451,19463,19469,19471,19477,19489,19499,19501,19507,19513,19531,19547,19549,19553,19561,19571,19573,19577,19597,19601,19603,19609,19613,19631,19633,19637,19639,19661,19667,19673,19679,19681,19693,19697,19699,19717,19721,19723,19729,19741,19753,19771,19777,19787,19793,19801,19807,19813,19819,19841,19853,19871,19883,19889,19891,19897,19903,19909,19913,19921,19931,19933,19937,19939,19949,19951,19961,19963,19969,19981,19991,19993,20011,20017,20033,20051,20053,20057,20059,20071,20077,20081,20089,20107,20113,20129,20137,20161,20171,20173,20177,20179,20189,20191,20197,20201,20203,20221,20231,20233,20257,20273,20281,20287,20299,20317,20329,20339,20341,20351,20353,20369,20371,20381,20383,20401,20411,20413,20423,20429,20431,20437,20441,20449,20459,20467,20473,20491,20497,20507,20509,20513,20521,20533,20537,20539,20557,20561,20563,20569,20581,20591,20593,20597,20599,20609,20621,20627,20633,20639,20641,20651,20653,20659,20677,20681,20683,20689,20693,20701,20707,20731,20737,20747,20749,20753,20761,20767,20773,20777,20779,20791,20801,20813,20819,20831,20833,20843,20849,20851,20857,20861,20863,20869,20873,20891,20893,20897,20899,20911,20917,20921,20929,20941,20953,20971,20977,21001,21011,21013,21017,21019,21029,21031,21037,21041,21043,21067,21073,21089,21097,21113,21121,21131,21137,21139,21149,21151,21157,21163,21169,21179,21181,21187,21193,21197,21199,21209,21211,21229,21233,21239,21241,21253,21281,21293,21299,21311,21313,21323,21331,21337,21341,21349,21353,21361,21373,21377,21383,21397,21403,21409,21421,21431,21433,21437,21439,21449,21451,21457,21461,21463,21481,21491,21493,21517,21521,21523,21529,21533,21541,21547,21569,21577,21589,21601,21617,21631,21643,21649,21659,21661,21673,21683,21697,21709,21713,21727,21739,21757,21767,21769,21773,21781,21793,21803,21809,21811,21817,21841,21851,21853,21857,21859,21877,21881,21883,21899,21901,21907,21913,21919,21937,21941,21943,21949,21953,21971,21977,21983,21997,22003,22009,22019,22021,22027,22033,22037,22039,22049,22051,22081,22091,22093,22097,22109,22111,22117,22121,22123,22129,22157,22163,22177,22187,22189,22193,22201,22207,22213,22217,22219,22237,22241,22243,22249,22261,22273,22289,22297,22321,22357,22361,22363,22369,22373,22381,22387,22411,22417,22429,22433,22441,22457,22481,22483,22489,22493,22501,22507,22513,22523,22529,22531,22537,22541,22543,22549,22553,22573,22577,22583,22597,22609,22637,22643,22649,22657,22667,22669,22681,22693,22697,22699,22717,22721,22727,22741,22747,22753,22777,22781,22783,22789,22793,22801,22807,22829,22837,22849,22859,22861,22867,22873,22877,22879,22889,22891,22909,22913,22919,22921,22933,22957,22961,22963,22969,22973,22987,22993,23017,23029,23041,23057,23071,23083,23089,23099,23101,23113,23123,23137,23147,23153,23167,23179,23197,23201,23203,23209,23213,23221,23227,23249,23257,23269,23281,23297,23311,23323,23329,23339,23341,23353,23363,23377,23389,23393,23407,23419,23437,23441,23449,23453,23461,23467,23473,23489,23497,23509,23521,23531,23533,23537,23539,23549,23551,23557,23561,23563,23581,23591,23593,23617,23633,23641,23647,23659,23677,23689,23699,23701,23711,23713,23729,23731,23741,23743,23761,23771,23773,23783,23789,23791,23797,23801,23809,23819,23827,23833,23851,23857,23867,23869,23873,23881,23893,23897,23899,23917,23921,23923,23929,23941,23951,23953,23957,23959,23969,23981,23987,23993,23999,24001,24011,24013,24019,24037,24041,24043,24049,24053,24061,24067,24091,24097,24107,24109,24113,24121,24127,24133,24137,24139,24151,24161,24173,24179,24191,24193,24203,24209,24211,24217,24221,24223,24229,24233,24251,24253,24257,24259,24271,24277,24281,24289,24301,24313,24331,24337,24361,24371,24373,24377,24379,24389,24391,24397,24401,24403,24427,24433,24449,24457,24473,24481,24491,24497,24499,24509,24511,24517,24523,24529,24539,24541,24547,24553,24557,24559,24569,24571,24589,24593,24599,24601,24613,24641,24653,24659,24671,24673,24683,24691,24697,24701,24709,24713,24721,24733,24737,24743,24757,24763,24769,24781,24791,24793,24797,24799,24809,24811,24817,24821,24823,24841,24851,24853,24877,24881,24883,24889,24893,24901,24907,24929,24937,24949,24961,24971,24973,24977,24979,24989,24991,25001,25003,25009,25021,25031,25033,25051,25057,25073,25087,25099,25117,25121,25129,25139,25141,25153,25163,25169,25171,25181,25183,25201,25211,25213,25217,25219,25229,25231,25237,25241,25243,25261,25271,25273,25297,25313,25321,25327,25339,25357,25369,25379,25381,25391,25393,25409,25411,25421,25423,25441,25451,25453,25457,25469,25471,25477,25481,25483,25489,25511,25513,25531,25537,25547,25549,25553,25561,25567,25573,25577,25579,25597,25601,25607,25609,25621,25633,25649,25657,25663,25681,25691,25693,25717,25727,25729,25741,25747,25757,25759,25771,25777,25789,25793,25801,25817,25831,25841,25873,25889,25901,25939,25951,25969,25981,25997,26011,26023,26029,26041,26051,26053,26057,26059,26069,26071,26077,26081,26083,26101,26111,26113,26137,26153,26161,26167,26179,26197,26209,26219,26221,26227,26233,26237,26239,26249,26251,26269,26273,26279,26281,26293,26321,26329,26347,26353,26363,26377,26387,26389,26399,26401,26413,26417,26419,26429,26431,26437,26441,26443,26449,26461,26471,26473,26491,26497,26513,26521,26527,26539,26557,26561,26569,26581,26591,26603,26609,26611,26623,26641,26651,26653,26669,26671,26681,26689,26699,26701,26707,26713,26731,26737,26749,26753,26771,26773,26777,26779,26797,26801,26809,26813,26821,26833,26837,26839,26849,26861,26867,26879,26881,26891,26893,26897,26899,26909,26911,26917,26921,26923,26941,26951,26953,26977,26993,27001,27007,27019,27037,27049,27059,27061,27071,27073,27089,27091,27101,27103,27121,27131,27133,27143,27149,27151,27157,27161,27169,27179,27187,27193,27211,27217,27227,27229,27233,27241,27253,27257,27259,27277,27281,27283,27289,27301,27311,27313,27317,27319,27329,27341,27347,27353,27359,27361,27371,27373,27379,27397,27401,27403,27409,27413,27421,27427,27451,27457,27467,27469,27473,27481,27487,27493,27497,27499,27511,27521,27533,27539,27551,27553,27563,27569,27571,27577,27581,27583,27589,27593,27611,27613,27617,27619,27631,27637,27641,27649,27661,27673,27691,27697,27721,27731,27733,27737,27739,27749,27751,27757,27761,27763,27787,27793,27809,27817,27833,27841,27851,27857,27859,27869,27871,27877,27883,27889,27899,27901,27907,27913,27917,27919,27929,27931,27949,27953,27959,27961,27973,28001,28013,28019,28031,28033,28043,28051,28057,28061,28069,28073,28081,28093,28097,28103,28117,28123,28129,28141,28151,28153,28157,28159,28169,28171,28177,28181,28183,28201,28211,28213,28237,28241,28243,28249,28253,28261,28267,28289,28297,28309,28321,28337,28351,28363,28369,28379,28381,28393,28403,28417,28429,28433,28447,28459,28477,28487,28489,28493,28501,28513,28523,28529,28531,28537,28561,28571,28573,28577,28579,28597,28601,28603,28619,28621,28627,28633,28639,28657,28661,28663,28669,28673,28691,28697,28703,28717,28723,28729,28739,28741,28747,28753,28757,28759,28769,28771,28801,28811,28813,28817,28829,28831,28837,28841,28843,28849,28877,28883,28897,28907,28909,28913,28921,28927,28933,28937,28939,28957,28961,28963,28969,28981,28993,29009,29017,29041,29077,29081,29083,29089,29093,29101,29107,29131,29137,29149,29153,29161,29177,29201,29203,29209,29213,29221,29227,29233,29243,29249,29251,29257,29261,29263,29269,29273,29293,29297,29303,29317,29329,29357,29363,29369,29377,29387,29389,29401,29413,29417,29419,29437,29441,29447,29461,29467,29473,29497,29501,29503,29509,29513,29521,29527,29549,29557,29569,29579,29581,29587,29593,29597,29599,29609,29611,29629,29633,29639,29641,29653,29677,29681,29683,29689,29693,29707,29713,29737,29749,29761,29777,29791,29803,29809,29819,29821,29833,29843,29857,29867,29873,29887,29899,29917,29921,29923,29929,29933,29941,29947,29969,29977,29989,30001,30017,30031,30043,30049,30059,30061,30073,30083,30097,30109,30113,30127,30139,30157,30161,30169,30173,30181,30187,30193,30209,30217,30229,30241,30251,30253,30257,30259,30283,30299,30301,30307,30313,30323,30329,30337,30347,30349,30353,30361,30367,30383,30389,30391,30397,30413,30419,30431,30433,30449,30451,30467,30469,30473,30481,30487,30493,30497,30523,30529,30539,30547,30553,30557,30559,30571,30577,30593,30617,30623,30637,30641,30643,30649,30661,30673,30683,30689,30691,30697,30701,30703,30713,30721,30733,30743,30757,30763,30769,30803,30809,30811,30817,30823,30829,30833,30841,30859,30881,30889,30913,30923,30929,30931,30937,30941,30943,30949,30953,30973,30977,30983,30997,31009,31033,31039,31051,31057,31067,31069,31081,31091,31093,31103,31117,31121,31123,31133,31147,31153,31163,31177,31181,31183,31189,31193,31201,31211,31217,31219,31243,31249,31259,31261,31267,31273,31289,31291,31307,31309,31313,31321,31327,31333,31343,31349,31351,31357,31361,31373,31379,31391,31393,31403,31411,31417,31427,31429,31433,31441,31447,31453,31457,31459,31483,31489,31499,31501,31513,31517,31519,31529,31531,31537,31543,31553,31571,31583,31597,31601,31603,31609,31613,31621,31627,31643,31649,31651,31657,31663,31669,31673,31681,31693,31697,31723,31729,31753,31763,31769,31771,31777,31781,31783,31789,31793,31819,31837,31841,31849,31873,31883,31889,31891,31897,31901,31903,31909,31921,31931,31933,31937,31939,31949,31951,31957,31961,31963,31981,31991,31993,32017,32033,32051,32057,32063,32077,32083,32089,32093,32101,32107,32113,32129,32149,32161,32173,32183,32189,32191,32197,32201,32203,32209,32213,32233,32237,32243,32257,32267,32269,32273,32281,32293,32297,32299,32317,32321,32323,32329,32341,32351,32353,32357,32359,32369,32381,32387,32393,32399,32401,32411,32413,32419,32437,32441,32443,32449,32453,32461,32467,32491,32497,32507,32509,32513,32521,32527,32533,32537,32539,32551,32561,32573,32579,32591,32593,32603,32609,32611,32617,32621,32623,32629,32633,32651,32653,32657,32659,32671,32677,32681,32689,32701,32713,32731,32737,32761,32779,32797,32801,32819,32821,32831,32833,32843,32849,32861,32863,32881,32891,32903,32909,32911,32917,32929,32939,32941,32947,32953,32971,32987,32989,32993,33001,33011,33013,33017,33037,33041,33043,33049,33053,33071,33073,33077,33079,33101,33107,33113,33119,33121,33133,33137,33139,33157,33161,33163,33169,33181,33193,33211,33217,33227,33233,33241,33247,33253,33259,33281,33293,33311,33323,33329,33331,33337,33343,33349,33353,33361,33371,33373,33377,33379,33389,33391,33401,33403,33409,33421,33431,33433,33451,33457,33473,33491,33493,33497,33499,33511,33517,33521,33529,33547,33553,33569,33577,33601,33611,33613,33617,33629,33641,33653,33659,33683,33689,33697,33701,33713,33739,33757,33773,33779,33797,33809,33821,33827,33833,33841,33851,33853,33857,33869,33871,33877,33881,33883,33889,33911,33913,33931,33937,33953,33961,33967,33979,33997,34001,34009,34019,34021,34031,34033,34043,34049,34051,34061,34063,34081,34091,34093,34103,34109,34117,34121,34129,34141,34147,34171,34177,34187,34189,34193,34201,34211,34213,34217,34219,34241,34243,34249,34253,34261,34271,34273,34277,34289,34301,34313,34319,34331,34333,34337,34339,34357,34361,34369,34373,34381,34387,34393,34411,34417,34427,34429,34441,34453,34457,34459,34471,34481,34493,34499,34511,34513,34523,34529,34537,34541,34543,34549,34553,34561,34571,34577,34579,34603,34609,34619,34621,34627,34633,34649,34651,34667,34669,34673,34681,34687,34693,34703,34709,34711,34717,34721,34733,34739,34751,34753,34757,34763,34777,34781,34793,34801,34817,34841,34847,34849,34859,34861,34877,34889,34901,34913,34931,34943,34957,34961,34973,34991,34997,35009,35027,35033,35041,35051,35053,35057,35069,35081,35093,35099,35117,35123,35129,35137,35141,35153,35159,35179,35197,35201,35213,35219,35237,35243,35249,35257,35261,35267,35281,35291,35293,35297,35309,35321,35327,35333,35339,35351,35377,35389,35393,35411,35417,35423,35429,35449,35453,35473,35477,35489,35513,35519,35521,35531,35533,35537,35549,35561,35573,35597,35603,35617,35627,35629,35633,35657,35663,35669,35681,35699,35713,35723,35729,35741,35747,35753,35771,35789,35801,35807,35809,35813,35831,35837,35851,35857,35867,35869,35879,35881,35887,35893,35897,35921,35923,35929,35947,35953,35963,35969,35971,35977,35989,35993,36011,36013,36017,36019,36031,36037,36047,36049,36053,36061,36077,36083,36089,36097,36107,36109,36121,36131,36133,36137,36139,36149,36151,36157,36161,36163,36187,36193,36203,36209,36217,36221,36223,36229,36233,36241,36247,36257,36269,36287,36289,36299,36301,36307,36313,36317,36319,36329,36331,36349,36353,36359,36361,36373,36401,36409,36427,36433,36443,36457,36467,36469,36479,36481,36493,36497,36499,36509,36511,36517,36521,36523,36529,36541,36551,36553,36571,36577,36593,36601,36607,36619,36637,36641,36649,36661,36671,36683,36689,36691,36703,36721,36731,36733,36749,36751,36761,36769,36779,36781,36787,36793,36811,36817,36829,36833,36851,36853,36857,36859,36877,36881,36889,36893,36901,36913,36917,36919,36929,36941,36947,36959,36961,36979,36991,37003,37021,37063,37069,37081,37091,37097,37099,37109,37111,37117,37123,37129,37141,37151,37153,37171,37193,37201,37207,37237,37241,37249,37259,37267,37273,37277,37279,37291,37297,37309,37313,37319,37321,37333,37339,37361,37369,37393,37403,37409,37417,37427,37439,37447,37453,37477,37481,37483,37489,37493,37501,37507,37529,37537,37549,37561,37577,37591,37603,37609,37619,37621,37633,37649,37661,37699,37711,37729,37741,37757,37771,37783,37789,37801,37817,37831,37841,37867,37873,37889,37897,37913,37921,37927,37937,37969,37997,38011,38047,38077,38081,38089,38107,38113,38123,38137,38147,38149,38159,38161,38173,38177,38179,38189,38191,38203,38209,38219,38221,38233,38237,38239,38249,38251,38257,38273,38279,38281,38293,38299,38317,38321,38329,38341,38351,38363,38369,38371,38383,38401,38411,38413,38417,38419,38429,38431,38441,38443,38449,38461,38471,38473,38491,38497,38513,38527,38539,38557,38561,38569,38579,38581,38593,38603,38609,38611,38621,38623,38641,38653,38657,38663,38677,38683,38701,38711,38713,38719,38729,38737,38741,38743,38749,38761,38771,38797,38803,38809,38813,38821,38827,38833,38849,38869,38881,38893,38903,38909,38911,38917,38921,38923,38929,38933,38953,38957,38963,38977,38981,38989,38993,39001,39013,39017,39023,39037,39043,39049,39061,39073,39089,39097,39121,39149,39161,39167,39169,39173,39211,39217,39229,39233,39241,39257,39281,39283,39289,39293,39301,39307,39313,39329,39337,39353,39379,39397,39401,39409,39433,39451,39457,39481,39493,39497,39499,39511,39521,39533,39539,39551,39553,39563,39569,39577,39581,39583,39589,39593,39601,39607,39617,39629,39647,39649,39653,39659,39671,39691,39701,39703,39709,39713,39721,39761,39773,39779,39791,39793,39803,39811,39821,39827,39833,39839,39841,39857,39863,39869,39877,39881,39883,39889,39901,39913,39923,39929,39931,39937,39947,39953,39961,39979,40003,40007,40009,40013,40021,40037,40051,40057,40067,40081,40093,40109,40127,40129,40139,40141,40157,40171,40219,40241,40247,40253,40267,40273,40277,40289,40297,40301,40307,40319

65536: This makes my answer go over the character limit (32768 numbers)

105953: 1-105952
Nexo
fonte
Eu acho que algo está errado aqui, você não pode equilibrar um em uma centrífuga de 100 buracos, mas você pode equilibrar 8,18,28,48,58,68,78,88 (talvez esta lista não esteja completa).
flawr
Eu devo ter acidentalmente cortar a um fora, como para os outros números, tem que olhar para isso
Nexus
Muito obrigado por atualizar sua lista! Se possível, você poderia simplesmente contar o número de saídas para os casos em que você recebe essas listas enormes - Eu não acho que throu realmente =)
flawr
@flawr Atualizei a lista
Nexus
0

Pitão - 39 37 bytes

Uma tradução direta da resposta python do @ Wrzlprmft.

f.Am>.asm^.n1c*.jZyk.nZQd^10_9.cUQTSQ

Explicação e provavelmente mais golfe em breve.

Experimente online aqui .

Maltysen
fonte