Mosaico de uma grade de 2 ^ N por 2 ^ N com trombinos em forma de L

14

Quando os alunos são ensinados pela primeira vez sobre a técnica de prova da indução matemática , um exemplo comum é o problema de agrupar uma grade 2 N × 2 N com trominoes em forma de L , deixando vazio um espaço predeterminado da grade. (N é um número inteiro não negativo).

Vou deixar para você revisar a prova, se você ainda não a conhece. Existem muitos recursos que discutem isso.

Sua tarefa aqui é escrever um programa que aceite um valor para N, bem como as coordenadas do espaço da grade para deixar em branco e imprima uma representação ASCII da grade tromino lado a lado resultante.

O personagem Opreencherá o espaço vazio e as 4 rotações do nosso tromino ficarão assim:

|
+-

 |
-+

-+
 |

+-
|

(Sim, pode ser ambíguo o que +combina com qual -e |para certos arranjos, mas tudo bem.)

Seu programa deve funcionar para N = 0 (para uma grade 1 × 1) até pelo menos N = 8 (para uma grade 256 × 256). Serão dados valores xey que são as coordenadas para O:

  • x é o eixo horizontal. x = 1 é a aresta da grade esquerda, x = 2 N é a aresta da grade direita.
  • y é o eixo vertical. y = 1 é a borda superior da grade, y = 2 N é a borda inferior da grade.

Ambos x e y estão sempre no intervalo [1, 2 N ].

Portanto, para um dado N, x e y, seu programa deve imprimir uma grade 2 N × 2 N , lado a lado com trominoes em forma de L, exceto pelas coordenadas da grade x, y que serão uma O.

Exemplos

Se N = 0, xey devem ser 1. A saída é simplesmente

O

Se N = 1, x = 1 e y = 2, a saída seria

-+
O|

N = 2, x = 3, y = 2:

+--+
||O|
|+-|
+--+

N = 2, x = 4, y = 1:

+-|O
||+-
|+-|
+--+

N = 3, x = 3, y = 6 (por exemplo, a imagem nesta página ):

+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
||O|-+||
|+-||-+|
+--++--+

Detalhes

  • Você pode escrever uma função que use os 3 números inteiros em vez de escrever um programa inteiro. Ele deve imprimir ou retornar a seqüência de grade.
  • Pegue a entrada de stdin, linha de comando (ou args de função se você escrever a função).
  • A saída pode opcionalmente conter uma única nova linha de treinamento.
  • Você não precisa usar o método lado a lado que a prova normalmente sugere. Só importa que a grade seja preenchida com trominos em forma de L além do O. (Os trombinos não podem ser cortados ou sair dos limites da grade.)

O código mais curto em bytes vence. O desempatador é uma publicação anterior. ( Contador de bytes acessíveis ) .

Passatempos de Calvin
fonte

Respostas:

2

Haskell, 250 240 236 bytes

c=cycle
z o(#)(x,y)=zipWith o(1#x)(2#y)
f n x y=unlines$(z(+)(\m w->[c[0,m]!!div(w-1)(2^(n-k))|k<-[1..n]])(x,y),"O")%n
(_,x)%0=[x]
((p:o),x)%k=z(++)(\_ q->((o,x):c[(c[3-q],[" |-+| +--+ |+-|"!!(4*p+q)])])!!abs(p-q)%(k-1))=<<[(0,1),(2,3)]

Isso segue de perto a solução indutiva para o problema. O ponto a marcar é representado por uma sequência de números de 0 a 3, que indica qual quadrante mantém o ponto em cada nível de zoom; isso é inicialmente calculado pela expressão começando com z (+). O operador (%) combina fotos dos quatro quadrantes em uma única foto. As imagens dos quadrantes não marcados são geradas desenhando quadrantes marcados com a marca em algum lugar próximo ao meio, desenhados com a marca "+ - |" conforme apropriado para construir o bloco L central.

Negócio engraçado: por razões de golfe, a subexpressão

\m w->[c[0,m]!!div(w-1)(2^(n-k))|k<-[1..n]]

(que calcula mais ou menos a sequência de bits para um número) é hilariantemente ineficiente --- determina se w / 2 ^ p é ímpar ou mesmo procurando o (w / 2 ^ p) ésimo elemento de uma lista.

Editar: salvou 10 bytes, incorporando o cálculo de bits e substituindo um if / then / else por uma operação de indexação.

Edit2: salvou mais quatro bytes retornando uma função a um operador. @randomra, a corrida já começou!

Demo:

λ> putStr $ f 4 5 6
+--++--++--++--+
|+-||-+||+-||-+|
||+--+||||+--+||
+-|+-|-++-|-+|-+
+-||-+-++--+||-+
||+-O||||-+|-+||
|+-||-+|-+|||-+|
+--++--+||-++--+
+--++-|-+|-++--+
|+-|||+--+|||-+|
||+-|+-||-+|-+||
+-||+--++--+||-+
+-|+-|-++-|-+|-+
||+--+||||+--+||
|+-||-+||+-||-+|
+--++--++--++--+
Matt Noonan
fonte
8

C, 399 bytes

char*T=" |-+ | +-| ",*B;w;f(N,x,y,m,n,F,h,k,i,j){w=B?F=0,w:1<<N|1;char b[N?w*w:6];for(k=w;k--;)b[k*w-1]=10;B=!B?F=1,m=0,n=0,x--,y--,b:B;if(N>1){h=1<<N-1;i=x>--h,j=y>h;while(++k<4)if(k%2-i||k/2-j)f(N-1,!(k%2)*h,!(k/2)*h,m+k%2*(h+1),n+k/2*(h+1));f(1,h&i,h&j,m+h,n+h);h++;f(N-1,x-h*i,y-h*j,m+h*i,n+h*j);}else while(++k<4)B[w*(n+k/2)+m+k%2]=T[5*x+2*y+k];if(F)B[y*w+x]=79,B[w*w-w-1]=0,puts(N?B:"O"),B=0;}

Ninguém apresentou nada ainda, então vou oferecer uma solução escassa. Marque minhas palavras, este não é o fim. Isso ficará mais curto.

Definimos uma função fque recebe 10 argumentos, mas você só precisa chamá-la com f(N, X, Y). A saída vai para stdout.

Aqui está uma versão legível:

char*T=" |-+ | +-| ",*B;
w;
f(N,x,y,m,n,F,h,k,i,j){
    w=B?F=0,w:1<<N|1;
    char b[N?w*w:6];
    for(k=w;k--;)
        b[k*w-1]=10;
    B=!B?F=1,m=0,n=0,x--,y--,b:B;
    if(N>1){
        h=1<<N-1;
        i=x>--h,j=y>h;
        while(++k<4)
            if(k%2-i||k/2-j)
                f(N-1,!(k%2)*h,!(k/2)*h,m+k%2*(h+1),n+k/2*(h+1));
        f(1,h&i,h&j,m+h,n+h);
        h++;
        f(N-1,x-h*i,y-h*j,m+h*i,n+h*j);
    }
    else
        while(++k<4)
            B[w*(n+k/2)+m+k%2]=T[5*x+2*y+k];
    if(F)B[y*w+x]=79,B[w*w-w-1]=0,puts(N?B:"O"),B=0;
}

Uma amostra da saída para f(3, 2, 7):

+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
|-+|-+||
|O|||-+|
+--++--+

É um algoritmo recursivo bastante simples para preencher a grade. Posso fazer upload de uma animação do algoritmo que desenha tromino, já que acho muito legal. Como sempre, sinta-se à vontade para fazer perguntas e gritar comigo se meu código quebrar!

Experimente online !

BrainSteel
fonte
8

Python 3, 276 265 237 bytes

Meu primeiro golfe em Python, então tenho certeza de que há muito espaço para melhorias.

def f(n,x,y,c='O'):
 if n<1:return c
 *t,l,a='x|-+-|',2**~-n;p=(a<x)+(a<y)*2
 for i in 0,1,2,3:t+=(p-i and f(n-1,1+~i%2*~-a,1+~-a*(1-i//2),l[p+i])or f(n-1,1+~-x%a,1+~-y%a,c)).split(),
 u,v,w,z=t;return'\n'.join(map(''.join,zip(u+w,v+z)))

10 bytes salvos graças ao @xnor e mais 6 bytes graças ao @ Sp3000.

A função retorna uma string. Exemplo de uso:

>>>print(f(3,3,6))    
+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
||O|-+||
|+-||-+|
+--++--+
randomra
fonte
1
Uma primeira corrida impressionante no golfe em Python! Alguns charsaves rápidos. Você pode cortar o espaço antes if p!=i; a lista dentro .join()não precisa []; (1-i%2)pode ser feito como ~i%2; você pode usar a descompactação iterável para escrever t,l,a=[],...como *t,l,a=...; if n==0pode ser verificado como if n<1porque nnão pode ser negativo; a final "\n".joinprovavelmente pode ser feita imprimindo cada elemento, pois as regras gerais permitem a impressão no lugar do retorno; if p!=ipode ser if p-iporque valores diferentes de zero são Truthy.
Xnor
@xnor Obrigado pelas dicas! A descompactação para obter uma lista vazia implícita é muito clara. Uso return em vez de print, pois fé uma função recursiva. Na verdade, tenho que reverter a formatação de saída split()após cada chamada interna.
Random #
Um pouco mais: a última linha pode ser escrita como A,B,C,D=t;return'\n'.join(map("".join,zip(A+C,B+D))), t+=[...]na segunda e última linha pode ser escrita como t+=...,(adicionando uma tupla ao invés de uma lista) e não tenho certeza se esta funciona, mas A if B else Cpode ser escrita como B and A or C(também no segunda-última linha), mas somente se a é nunca Falsas (que eu não acho que é)?
SP3000
4

JavaScript (ES6) 317 414

Muito trabalho para o golfe, mas ainda bastante longo.

T=(b,x,y)=>
  (F=(d,x,y,f,t=[],q=y<=(d>>=1)|0,
      b=d?x>d
       ?q
         ?F(d,x-d,y,0,F(d,1,1,2))
         :F(d,1,d,2,F(d,x-d,y-d))
       :F(d,1,d,1-q,F(d,1,1,q)):0,
      r=d?(x>d
         ?F(d,d,d,1-q,F(d,d,1,q))
         :q
           ?F(d,x,y,1,F(d,d,1,2))
           :F(d,d,d,2,F(d,x,y-d))
      ).map((x,i)=>x.concat(b[i])):[[]]
    )=>(r[y-1][x-1]='|+-O'[f],r.concat(t))
  )(1<<b,x,y,3).join('\n').replace(/,/g,'')

Execute o snippet para testar (melhor aparência usando caracteres de bloco Unicode - mas ainda um pouco mais)

edc65
fonte
1

IDL 8.3+, 293 bytes

Isso é muito longo, estou tentando reduzir, mas ainda não cheguei lá.

function t,n,x,y
m=2^n
c=['|','+','-']
b=replicate('0',m,m)
if m eq 1 then return,b
h=m/2
g=h-1
k=[1:h]
o=x gt h
p=y gt h
q=o+2*p
if m gt 2then for i=0,1 do for j=0,1 do b[i*h:i*h+g,j*h:j*h+g]=t(n-1,i+2*j eq q?x-i*h:k[i-1],i+2*j eq q?y-j*h:k[j-1])
b[g+[1-o,1-o,o],g+[p,1-p,1-p]]=c
return,b
end

Saídas:

IDL> print,t(1,1,2)
- +
0 |
IDL> print,t(2,3,2)
+ - - +
| | 0 |
| + - |
+ - - +
IDL> print,t(2,4,1)
+ - | 0
| | + -
| + - |
+ - - +
IDL> print,t(3,3,6)
+ - - + + - - +
| + - | | - + |
| | + - - + | |
+ - | - + | - +
+ - - + | | - +
| | 0 | - + | |
| + - | | - + |
+ - - + + - - +

E ... só por diversão ...

IDL> print,t(6,8,9)
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
| | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | |
+ - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - +
+ - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - +
| | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | |
| + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + |
+ - - + + - | - + | - + + - - + + - - + + - | - + | - + + - - + + - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - +
+ - - + + - | 0 | | - + + - - + + - - + + - - + | | - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - +
| + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + | | + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + |
| | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | | | | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | |
+ - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - + + - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - +
+ - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - + + - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - +
| | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | | | | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | |
| + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + | | + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + |
+ - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - + + - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - +
| + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + | | + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + |
| | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | | | | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | |
+ - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - + + - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - +
+ - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - + + - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - +
| | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | | | | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | |
| + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + | | + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + |
+ - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + | | - + + - - +
+ - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + | | - + + - - + + - - + + - | - + | - + + - - +
| + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + | | + - | | | + - - + | | | - + |
| | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | | | | + - | + - | | - + | - + | |
+ - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - + + - | | + - - + + - - + | | - +
+ - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - + + - | + - | - + + - | - + | - +
| | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | | | | + - - + | | | | + - - + | |
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
| | + - - + | | | | + - - + | | | | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | | | | + - - + | | | | + - - + | |
+ - | + - | - + + - | - + | - + + - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - + + - | + - | - + + - | - + | - +
+ - | | + - - + + - - + | | - + + - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - + + - | | + - - + + - - + | | - +
| | + - | + - | | - + | - + | | | | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | | | | + - | + - | | - + | - + | |
| + - | | | + - - + | | | - + | | + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + | | + - | | | + - - + | | | - + |
+ - - + + - | + - | - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - | - + | - + + - - +
+ - - + + - | | + - - + + - - + + - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + | | - + + - - +
| + - | | | + - | + - | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + |
| | + - | + - | | | + - - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | |
+ - | | + - - + + - | + - | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - +
+ - | + - | - + + - | | + - - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - +
| | + - - + | | | | + - | + - | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | |
| + - | | - + | | + - | | | + - | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + |
+ - - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - | + - | - + + - - + + - - + + - - + + - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - +
| + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + | | + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + |
| | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | | | | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | |
+ - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - + + - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - +
+ - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - + + - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - +
| | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | | | | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | |
| + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + | | + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + |
+ - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - +
+ - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - + + - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - +
| + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + |
| | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | |
+ - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - +
+ - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - +
| | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | |
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +
sirpercival
fonte
0

Rubi Rev 1, 288

Como um literal lambda anônimo. Mostrado no programa de teste (o literal lambda é ->(n,a,b){...})

g=
->(n,a,b){
$x=a-1
$y=b-1
$a=Array.new(m=2**n){"|"*m}
def t(u,v,m,r,f)
(m/=2)==1?$a[v+1-r/2%2][u,2]='-+-'[r%2,2]:0
if m>1 
4.times{|i|i==r ?t(u+m/2,v+m/2,m,r,0):t(u+i%2*m,v+i/2*m,m,3-i,0)}
f>0?t(u+r%2*m,v+r/2*m,m,2*$x/m&1|$y*4/m&2,1):0
end
end
t(0,0,m,2*$x/m|$y*4/m,1) 
$a[$y][$x]='O'
$a
}

n=gets.to_i
a=gets.to_i
b=gets.to_i
puts(g.call(n,a,b))

Ruby Rev 0, 330 não destruído

Atualmente, o único golfe que estou reivindicando é a eliminação de comentários, novas linhas e recuos desnecessários.

Este é o meu primeiro algoritmo adequado codificado em Ruby e tem sido um trabalho árduo. Tenho certeza de que pelo menos 50 caracteres podem ser eliminados, mas já fiz o suficiente por enquanto. Existem alguns horrores reais, por exemplo, a entrada. Provavelmente, isso pode ser corrigido por uma função ou lambda em vez de por um programa, mas a função interna tque desenha os trominos ainda precisa de acesso às variáveis ​​globais. Vou ter que descobrir a sintaxe para isso.

Uma característica da minha resposta que não está presente nas outras é que eu inicializo uma matriz de strings com |caracteres. Isso significa que eu só tenho que desenhar o +-ou -+, que estão próximos um do outro na mesma linha.

m=2**gets.to_i                                         #get n and store 2**n in m
$x=gets.to_i-1                                         #get x and y, and...
$y=gets.to_i-1                                         #convert from 1-indexed to 0-indexed
$a=Array.new(m){"|"*m}                                 #array of m strings length m, initialized with "|"

def t(u,v,m,r,f)                                       #u,v=top left of current field. r=0..3= quadrant containing O. f=flag to continue surrounding O
  m/=2
  if m==1 then $a[v+1-r/2%2][u,2] ='-+-'[r%2,2];end    #if we are at char level, insert -+ or +- (array already initialized with |'s)
  if m>1 then                                          #at higher level, 4 recursive calls to draw trominoes of next size down 
    4.times{|i| i==r ? t(u+m/2,v+m/2,m,r,0):t(u+i%2*m,v+i/2*m,m,3-i,0)}
    f>0?t(u+r%2*m,v+r/2*m,m,2*$x/m&1|$y*4/m&2,1):0     #then one more call to fill in the empty quadrant (this time f=1)
  end
end

$a[$y][$x]='O'                                         #fill in O
t(0,0,m,2*$x/m&1|$y*4/m&2,1)                           #start call. 2*x/m gives 0/1 for left/right quadrant, similarly 4*y/m gives 0/2 for top/bottom 

puts $a                                                #dump array to stdout, elements separated by newlines.
Level River St
fonte
0

Haskell, 170 bytes

r=reverse
g n s x y|n<1=[s]|x>k=r<$>g n s(2^n+1-x)y|y>k=r$g n s x$2^n+1-y|0<1=zipWith(++)(h s x y++h"-"k 1)$h"|"1 k++h"+"1 1 where m=n-1;k=2^m;h=g m
f n x=unlines.g n"O"x

Corra online em Ideone

Exemplo de execução:

*Main> putStr(f 3 3 6)
+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
||O|-+||
|+-||-+|
+--++--+
Anders Kaseorg
fonte