Computador binário de par I-Ching

10

Introdução

I Ching é um texto antigo de adivinhação e o mais antigo dos clássicos chineses. Ele usa um tipo de adivinhação chamado cleromancia, que produz números aparentemente aleatórios.

A unidade básica do Zhou yi é o hexagrama (卦 guà), uma figura composta por seis linhas horizontais empilhadas (爻 yáo). Cada linha está quebrada ou ininterrupta. O texto recebido do Zhou yi contém todos os 64 hexagramas possíveis

A sequência do rei Wen apresenta os 64 hexagramas, agrupados em 32 pares. Para 28 dos pares, o segundo hexagrama é criado girando o primeiro de cabeça para baixo (ou seja, rotação de 180 °). A exceção a esta regra é para hexagramas simétricos que são os mesmos após a rotação. Os parceiros para isso são fornecidos invertendo cada linha: o sólido fica quebrado e o quebrado fica sólido.

 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
    1        2        3        4            5        6        7        8   

 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
    9       10       11       12           13       14       15       16   

 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
   17       18       19       20           21       22       23       24   

 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
   25       26       27       28           29       30       31       32   

 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
   33       34       35       36           37       38       39       40   

 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
   41       42       43       44           45       46       47       48   

 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
   49       50       51       52           53       54       55       56   

 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
   57       58       59       60           61       62       63       64   

Solicitação

O objetivo disso é criar uma pequena ferramenta que calcule o par para um determinado valor de hexagrama.

  • Para traduzir isso em binário, eu uso: broken line = 0, unbroken line = 1, por isso hexagram Number 1tem binary value 63.

  • A ferramenta utiliza exatamente um argumento, um número entre 1 e 64, conforme o par hexagrama solicita e produz dois exagramas contendo o número solicitado e seu oposto (explicação: se arg é ímpar, a saída deve conter hexagrama de arg e arg + 1 , mas se arg é par, a saída deve conter hexagrama de arg-1 e arg ).

  • A ferramenta tem que girar 180 ° hexagrama solicitado enquanto não simétrica , ou invertido los quando symetric .

  • Nenhum mapa está autorizado, exceto este, que pode ser armazenado de qualquer forma que você achar útil

     {  1:63,    3:34,    5:58,    7:16,    9:59,   11:56,   13:47,   15: 8,  
       17:38,   19:48,   21:37,   23: 1,   25:39,   27:33,   29:18,   31:14,  
       33:15,   35: 5,   37:43,   39:10,   41:49,   43:62,   45: 6,   47:22,  
       49:46,   51:36,   53:11,   55:44,   57:27,   59:19,   61:51,   63:42 }
    

    Este mapa contém o valor binário de cada 1º exagrama dos pares. Portanto, para cada par, o primeiro deve ser retirado deste mapa, mas o segundo deve ser calculado de acordo com a regra anterior.

  • Ouput deve conter dois hexagramas e seus números. Amostra:

    iChingHexaPair 1
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
        1        2   
    
    iChingHexaPair 14
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
       13       14   
    
  • A brecha padrão se aplica

  • Evite linguagem não livre ou publique a saída para casos de teste completos.

Este é um , então a resposta mais curta em caracteres vence.

Menor por idioma

F. Hauri
fonte
@ MartinBüttner Sim, obrigado! Talvez poderíamos adicionar uma tag: i-ching (eu não Foud-los enquanto procurou I-Ching, hexagrama e assim) Mas a minha pergunta se mais sobrerotating binary by 180°
F. Hauri
2
Observe que atualmente a brecha padrão em idiomas não livres se aplica apenas a desafios de policiais e ladrões .
Alex A.
@ AlexA.Question modificado: idioma não livre não é bem-vindo, mas não é proibido, amostra de saída é necessária para idiomas não livres .
F. Hauri

Respostas:

4

Python 2, 65 61

Gera pares de hexagramas I-Ching unicode

def t(a):
 b=a+a%2
 for c in b-1,b:
  print unichr(19903+c),c

(economizou 4 graças a @ Sherlock9)

Exemplo de entrada e saída:

>>> t(1)
䷀ 1
䷁ 2
>>> t(14)
䷌ 13
䷍ 14
Willem
fonte
11
Eu acho que você pode salvar 4 bytes com #b=a+a%2
Sherlock9
Isso é uma brecha: não há calculadora binária!
F. Hauri
@ F.Hauri: Não diz que é preciso haver uma na pergunta.
Deusovi 30/12/2015
@Deusovi (1) No título, (2) na primeira linha do pedido, (3) Pelo menos, quebrar a quarta regra: 1st has to be taken from this map!
F. Hauri
11
@F: Você diz que o objetivo é calcular o par, mas você só precisa gerar os pares de hexagramas. A 'tabela' está embutida no Unicode em vez de em um arquivo de texto - o que há de errado nisso?
Deusovi 30/12/2015
3

Python 2, 252 245 244

Agora, incluindo computação binária (economizando 8 caracteres graças a @ Sherlock9):

d='?":\x10;8/\x08&0%\x01\'!\x12\x0e\x0f\x05+\n1>\x06\x16.$\x0b,\x1b\x133*'
k=lambda l:'\n'.join("{:06b}".format(l)).replace('1',u'▄▄▄▄▄▄▄').replace('0',u'▄▄▄ ▄▄▄')
def t(a):
 j=a+a%2-1;m=ord(d[j/2]);b=k(m);r=b[::-1];print b,j,'\n\n',r if r!=b else k(63-m),j+1

Exemplo de entrada e saída:

>>> t(1)
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄ 1 

▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄ 2
>>> t(3)
▄▄▄▄▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄▄▄▄▄
▄▄▄ ▄▄▄ 3 

▄▄▄ ▄▄▄
▄▄▄▄▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄▄▄▄▄ 4
Willem
fonte
11
Você pode mudar j=a+a%2-1para j=a-1, já que está usando a divisão inteira, mas precisará usar j+1e j+2na instrução print no final. Isso ainda economiza 2 bytes. Também usar m=ord(d[j/2]);e mnos dois lugares que você chama k()economizará 6 bytes. Além disso, é o primeiro 0no "{0:06b}".format(l)estritamente necessário? Caso contrário, esse é outro byte. Por fim, se você mudar para o Python 3, poderá se livrar dos us na frente ▄▄▄▄▄▄▄, mas a impressão precisará de parênteses, portanto, é apenas mais um byte. Vou mantê-lo informado sobre qualquer outra coisa que eu pensar.
Sherlock9
Infelizmente, não posso mudar j=a+a%2-1para j=a-1, pois deve gerar os pares 13 e 14 quando insiro 14. Obrigado por suas sugestões
Willem
Ah, você está certo. Aliás, estou tendo problemas para executar esse código no Ideone. Você pode dar uma olhada? ideone.com/GdWu4e
Sherlock9
@ Sherlock9 Ideone parece estar tendo problemas com os caracteres unicode ideone.com/FeK1rK
Willem
11
Ah obrigada. Para salvar outro byte, eu escreveria def t(a):j=a+a%2-1;etc.. Coloque tudo em uma linha, essencialmente. E você pode escrever k=lambda l:para salvar outro byte.
Sherlock9
2

Pure bash 252

u=(▅▅▅{' ',▅}▅▅▅);m=_yWgXUL8CMB1Dxief5HaN@6mKAbIrjPG;s=$[($1-1)/2];r=$[64#${m:s:1}];for i in {0..5};do echo ${u[(r>>i)&1]} ${u[((r>>5)%2==r%2)&((r>>4)%2==(r>>1)%2)&((r>>3)%2==(r>>2)%2)?1^(r>>i)&1:(r>>(5-i))&1]};done;echo $[s*2+1] $[s*2+2]

com mais 2 quebra de linha:

u=(▅▅▅{' ',▅}▅▅▅);m=_yWgXUL8CMB1Dxief5HaN@6mKAbIrjPG;s=$[($1-1)/2];r=$[64#${m:s
:1}];for i in {0..5};do echo ${u[(r>>i)&1]} ${u[((r>>5)%2==r%2)&((r>>4)%2==(r>>
1)%2)&((r>>3)%2==(r>>2)%2)?1^(r>>i)&1:(r>>(5-i))&1]};done;echo $[s*2+1] $[s*2+2]

Testes:

for k in 1 15 28 34;do set -- $k;echo request: $k;
u=(▅▅▅{' ',▅}▅▅▅);m=_yWgXUL8CMB1Dxief5HaN@6mKAbIrjPG;s=$[($1-1)/2];r=$[64#${m:s
:1}];for i in {0..5};do echo ${u[(r>>i)&1]} ${u[((r>>5)%2==r%2)&((r>>4)%2==(r>>
1)%2)&((r>>3)%2==(r>>2)%2)?1^(r>>i)&1:(r>>(5-i))&1]};done;echo $[s*2+1] $[s*2+2]
done;echo $[s*2+1] $[s*2+2]; done
request: 1
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
1 2
request: 15
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
15 16
request: 28
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
27 28
request: 34
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅▅▅▅▅
▅▅▅▅▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
33 34
F. Hauri
fonte