Introdução
I Ching é um texto antigo de adivinhação e o mais antigo dos clássicos chineses. Ele usa um tipo de adivinhação chamado cleromancia, que produz números aparentemente aleatórios.
A unidade básica do Zhou yi é o hexagrama (卦 guà), uma figura composta por seis linhas horizontais empilhadas (爻 yáo). Cada linha está quebrada ou ininterrupta. O texto recebido do Zhou yi contém todos os 64 hexagramas possíveis
A sequência do rei Wen apresenta os 64 hexagramas, agrupados em 32 pares. Para 28 dos pares, o segundo hexagrama é criado girando o primeiro de cabeça para baixo (ou seja, rotação de 180 °). A exceção a esta regra é para hexagramas simétricos que são os mesmos após a rotação. Os parceiros para isso são fornecidos invertendo cada linha: o sólido fica quebrado e o quebrado fica sólido.
▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 1 2 3 4 5 6 7 8 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 9 10 11 12 13 14 15 16 ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ 17 18 19 20 21 22 23 24 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 25 26 27 28 29 30 31 32 ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 33 34 35 36 37 38 39 40 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 41 42 43 44 45 46 47 48 ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ 49 50 51 52 53 54 55 56 ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ 57 58 59 60 61 62 63 64
Solicitação
O objetivo disso é criar uma pequena ferramenta que calcule o par para um determinado valor de hexagrama.
Para traduzir isso em binário, eu uso:
broken line = 0, unbroken line = 1
, por issohexagram Number 1
tembinary value 63
.A ferramenta utiliza exatamente um argumento, um número entre 1 e 64, conforme o par hexagrama solicita e produz dois exagramas contendo o número solicitado e seu oposto (explicação: se arg é ímpar, a saída deve conter hexagrama de arg e arg + 1 , mas se arg é par, a saída deve conter hexagrama de arg-1 e arg ).
A ferramenta tem que girar 180 ° hexagrama solicitado enquanto não simétrica , ou invertido los quando symetric .
Nenhum mapa está autorizado, exceto este, que pode ser armazenado de qualquer forma que você achar útil
{ 1:63, 3:34, 5:58, 7:16, 9:59, 11:56, 13:47, 15: 8, 17:38, 19:48, 21:37, 23: 1, 25:39, 27:33, 29:18, 31:14, 33:15, 35: 5, 37:43, 39:10, 41:49, 43:62, 45: 6, 47:22, 49:46, 51:36, 53:11, 55:44, 57:27, 59:19, 61:51, 63:42 }
Este mapa contém o valor binário de cada 1º exagrama dos pares. Portanto, para cada par, o primeiro deve ser retirado deste mapa, mas o segundo deve ser calculado de acordo com a regra anterior.
Ouput deve conter dois hexagramas e seus números. Amostra:
iChingHexaPair 1 ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ 1 2 iChingHexaPair 14 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ 13 14
A brecha padrão se aplica
- Evite linguagem não livre ou publique a saída para casos de teste completos.
Este é um código de golfe , então a resposta mais curta em caracteres vence.
rotating binary by 180°
Respostas:
Python 2,
6561Gera pares de hexagramas I-Ching unicode
(economizou 4 graças a @ Sherlock9)
Exemplo de entrada e saída:
fonte
b=a+a%2
1st has to be taken from this map
!Python 2,
252245244Agora, incluindo computação binária (economizando 8 caracteres graças a @ Sherlock9):
Exemplo de entrada e saída:
fonte
j=a+a%2-1
paraj=a-1
, já que está usando a divisão inteira, mas precisará usarj+1
ej+2
na instrução print no final. Isso ainda economiza 2 bytes. Também usarm=ord(d[j/2]);
em
nos dois lugares que você chamak()
economizará 6 bytes. Além disso, é o primeiro0
no"{0:06b}".format(l)
estritamente necessário? Caso contrário, esse é outro byte. Por fim, se você mudar para o Python 3, poderá se livrar dosu
s na frente▄▄▄▄▄▄▄
, mas a impressão precisará de parênteses, portanto, é apenas mais um byte. Vou mantê-lo informado sobre qualquer outra coisa que eu pensar.j=a+a%2-1
paraj=a-1
, pois deve gerar os pares 13 e 14 quando insiro 14. Obrigado por suas sugestõesdef t(a):j=a+a%2-1;etc.
. Coloque tudo em uma linha, essencialmente. E você pode escreverk=lambda l:
para salvar outro byte.Pure bash 252
com mais 2 quebra de linha:
Testes:
fonte