Aproximando um caso especial da função Riemann Theta

27

Esse desafio é escrever um código rápido que possa executar uma soma infinita difícil computacionalmente.

Entrada

Uma matriz nby com entradas inteiras menores que no valor absoluto. Ao testar, fico feliz em fornecer informações ao seu código em qualquer formato que ele deseje. O padrão será uma linha por linha da matriz, espaço separado e fornecido na entrada padrão.nP100

Pserá definido positivamente, o que implica que será sempre simétrico. Fora isso, você realmente não precisa saber o que significa positivo definitivo para responder ao desafio. No entanto, isso significa que realmente haverá uma resposta para a soma definida abaixo.

No entanto, você precisa saber o que é um produto de vetor de matriz .

Saída

Seu código deve calcular a soma infinita:

insira a descrição da imagem aqui

para mais ou menos 0,0001 da resposta correta. Aqui Zestá o conjunto de números inteiros e Z^ntodos os vetores possíveis com nelementos inteiros e eé a famosa constante matemática que é aproximadamente igual a 2,71828. Observe que o valor no expoente é simplesmente um número. Veja abaixo um exemplo explícito.

Como isso se relaciona com a função Riemann Theta?

Na notação deste artigo sobre a aproximação da função Riemann Theta , estamos tentando calcular insira a descrição da imagem aqui. Nosso problema é um caso especial por pelo menos duas razões.

  • Definimos o parâmetro inicial chamado zno artigo vinculado como 0.
  • Criamos a matriz de Pmaneira que o tamanho mínimo de um valor próprio seja 1. (Veja abaixo como a matriz é criada.)

Exemplos

P = [[ 5.,  2.,  0.,  0.],
     [ 2.,  5.,  2., -2.],
     [ 0.,  2.,  5.,  0.],
     [ 0., -2.,  0.,  5.]]

Output: 1.07551411208

Mais detalhadamente, vamos ver apenas um termo na soma deste P. Tomemos, por exemplo, apenas um termo na soma:

insira a descrição da imagem aqui

e x^T P x = 30. Observe que isso e^(-30)é sobre 10^(-14)e, portanto, é improvável que seja importante para obter a resposta correta até a tolerância especificada. Lembre-se de que a soma infinita realmente usará todo vetor possível de comprimento 4 onde os elementos são inteiros. Eu apenas escolhi um para dar um exemplo explícito.

P = [[ 5.,  2.,  2.,  2.],
     [ 2.,  5.,  4.,  4.],
     [ 2.,  4.,  5.,  4.],
     [ 2.,  4.,  4.,  5.]]

Output = 1.91841190706

P = [[ 6., -3.,  3., -3.,  3.],
     [-3.,  6., -5.,  5., -5.],
     [ 3., -5.,  6., -5.,  5.],
     [-3.,  5., -5.,  6., -5.],
     [ 3., -5.,  5., -5.,  6.]]

Output = 2.87091065342

P = [[6., -1., -3., 1., 3., -1., -3., 1., 3.],
     [-1., 6., -1., -5., 1., 5., -1., -5., 1.],
     [-3., -1., 6., 1., -5., -1., 5., 1., -5.],
     [1., -5., 1., 6., -1., -5., 1., 5., -1.],
     [3., 1., -5., -1., 6., 1., -5., -1., 5.],
     [-1., 5., -1., -5., 1., 6., -1., -5., 1.],
     [-3., -1., 5., 1., -5., -1., 6., 1., -5.],
     [1., -5., 1., 5., -1., -5., 1., 6., -1.],
     [3., 1., -5., -1., 5., 1., -5., -1., 6.]]

Output: 8.1443647932

P = [[ 7.,  2.,  0.,  0.,  6.,  2.,  0.,  0.,  6.],
     [ 2.,  7.,  0.,  0.,  2.,  6.,  0.,  0.,  2.],
     [ 0.,  0.,  7., -2.,  0.,  0.,  6., -2.,  0.],
     [ 0.,  0., -2.,  7.,  0.,  0., -2.,  6.,  0.],
     [ 6.,  2.,  0.,  0.,  7.,  2.,  0.,  0.,  6.],
     [ 2.,  6.,  0.,  0.,  2.,  7.,  0.,  0.,  2.],
     [ 0.,  0.,  6., -2.,  0.,  0.,  7., -2.,  0.],
     [ 0.,  0., -2.,  6.,  0.,  0., -2.,  7.,  0.],
     [ 6.,  2.,  0.,  0.,  6.,  2.,  0.,  0.,  7.]]

Output = 3.80639191181

Ponto

Vou testar seu código em matrizes P escolhidas aleatoriamente de tamanho crescente.

Sua pontuação é simplesmente a maior npara a qual eu recebo uma resposta correta em menos de 30 segundos quando a média é superior a 5 execuções com matrizes Pdesse tamanho escolhidas aleatoriamente .

Que tal uma gravata?

Se houver empate, o vencedor será aquele cujo código executar mais rápido, em média, em 5 corridas. Caso esses horários também sejam iguais, o vencedor é a primeira resposta.

Como a entrada aleatória será criada?

  1. Seja M uma matriz aleatória de m por n com m <= n e entradas -1 ou 1. Em Python / numpy M = np.random.choice([0,1], size = (m,n))*2-1. Na prática, vou começar ma discutir n/2.
  2. Seja P a matriz de identidade + M ^ T M. Em Python / numpy P =np.identity(n)+np.dot(M.T,M). Agora temos a garantia de que Pé definitivo positivo e as entradas estão em um intervalo adequado.

Observe que isso significa que todos os autovalores de P são pelo menos 1, tornando o problema potencialmente mais fácil do que o problema geral de aproximação da função Riemann Theta.

Línguas e bibliotecas

Você pode usar qualquer idioma ou biblioteca que desejar. No entanto, para fins de pontuação, executarei seu código na minha máquina, portanto, forneça instruções claras sobre como executá-lo no Ubuntu.

Minha máquina Os horários serão executados na minha máquina. Esta é uma instalação padrão do Ubuntu em um processador de 8 GB AMD FX-8350 de oito núcleos. Isso também significa que eu preciso poder executar seu código.


Respostas principais

  • n = 47em C ++ por Ton Hospel
  • n = 8em Python por Maltysen
Glorfindel
fonte
Vale ressaltar que uma matriz definida positiva é simétrica por definição.
usar o seguinte código
@ 2012rcampion Obrigado. Adicionado.
Ok, talvez esta é uma pergunta estúpida, mas eu olhava para isso por idades e eu não consigo descobrir como você tem um xde [-1,0,2,1]. Você pode elaborar sobre isso? (Dica: Eu não sou um guru matemática)
wnnmaw
@wnnmaw Desculpe por ser confuso. A soma tem um termo para cada vetor possível x de comprimento 4 neste caso. [-1,0,2,1] é apenas uma que escolhi aleatoriamente para mostrar explicitamente qual seria o termo nesse caso.
1
@Lembik A maneira como você gera as matrizes SPD implica que nenhum valor singular jamais terá um valor absoluto abaixo de 1. Podemos usar esse conhecimento?
flawr

Respostas:

15

C ++

Não há abordagem mais ingênua. Avalie apenas dentro do elipsóide.

Usa as bibliotecas armadillo, ntl, gsl e pthread. Instale usando

apt-get install libarmadillo-dev libntl-dev libgsl-dev

Compile o programa usando algo como:

g++ -Wall -std=c++11 -O3 -fno-math-errno -funsafe-math-optimizations -ffast-math -fno-signed-zeros -fno-trapping-math -fomit-frame-pointer -march=native -s infinity.cpp -larmadillo -lntl -lgsl -lpthread -o infinity

Em alguns sistemas, pode ser necessário adicionar -lgslcblasdepois -lgsl.

Execute com o tamanho da matriz seguido pelos elementos em STDIN:

./infinity < matrix.txt

matrix.txt:

4
5  2  0  0
2  5  2 -2
0  2  5  0
0 -2  0  5

Ou, para tentar uma precisão de 1e-5:

./infinity -p 1e-5 < matrix.txt

infinity.cpp:

// Based on http://arxiv.org/abs/nlin/0206009

#include <iostream>
#include <vector>
#include <stdexcept>
#include <cstdlib>
#include <cmath>
#include <string>
#include <thread>
#include <future>
#include <chrono>

using namespace std;

#include <getopt.h>

#include <armadillo>

using namespace arma;

#include <NTL/mat_ZZ.h>
#include <NTL/LLL.h>

using namespace NTL;

#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_roots.h>

double const EPSILON = 1e-4;       // default precision
double const GROW    = 2;          // By how much we grow the ellipsoid volume
double const UPSCALE = 1e9;        // lattice reduction, upscale real to integer
double const THREAD_SEC = 0.1;     // Use threads if need more time than this
double const RADIUS_MAX = 1e6;     // Maximum radius used in root finding
double const RADIUS_INTERVAL = 1e-6; // precision of target radius
int const ITER_MAX = 1000;         // Maximum iterations in root finding
unsigned long POINTS_MIN = 1000;   // Minimum points before getting fancy

struct Result {
    Result& operator+=(Result const& add) {
        sum     += add.sum;
        elapsed += add.elapsed;
        points  += add.points;
        return *this;
    }

    friend Result operator-(Result const& left, Result const& right) {
        return Result{left.sum - right.sum,
                left.elapsed - right.elapsed,
                left.points - right.points};
    }

    double sum, elapsed;
    unsigned long points;
};

struct Params {
    double half_rho, half_N, epsilon;
};

double fill_factor_error(double r, void *void_params) {
    auto params = static_cast<Params*>(void_params);
    r -= params->half_rho;
    return gsl_sf_gamma_inc(params->half_N, r*r) - params->epsilon;
}

// Calculate radius needed for target precision
double radius(int N, double rho, double lat_det, double epsilon) {
    Params params;

    params.half_rho = rho / 2.;
    params.half_N   = N   / 2.;
    params.epsilon = epsilon*lat_det*gsl_sf_gamma(params.half_N)/pow(M_PI, params.half_N);

    // Calculate minimum allowed radius
    auto r = sqrt(params.half_N)+params.half_rho;
    auto val = fill_factor_error(r, &params);
    cout << "Minimum R=" << r << " -> " << val << endl;

    if (val > 0) {
        // The minimum radius is not good enough. Work out a better one by
        // finding the root of a tricky function
        auto low  = r;
        auto high = RADIUS_MAX * 2 * params.half_rho;
        auto val = fill_factor_error(high, &params);
        if (val >= 0)
            throw(logic_error("huge RADIUS_MAX is still not big enough"));

        gsl_function F;
        F.function = fill_factor_error;
        F.params   = &params;

        auto T = gsl_root_fsolver_brent;
        auto s = gsl_root_fsolver_alloc (T);
        gsl_root_fsolver_set (s, &F, low, high);

        int status = GSL_CONTINUE;
        for (auto iter=1; status == GSL_CONTINUE && iter <= ITER_MAX; ++iter) {
            gsl_root_fsolver_iterate (s);
            low  = gsl_root_fsolver_x_lower (s);
            high = gsl_root_fsolver_x_upper (s);
            status = gsl_root_test_interval(low, high, 0, RADIUS_INTERVAL  * 2 * params.half_rho);
        }
        r = gsl_root_fsolver_root(s);
        gsl_root_fsolver_free(s);
        if (status == GSL_CONTINUE)
            throw(logic_error("Search for R did not converge"));
    }
    return r;
}

// Recursively walk down the ellipsoids in each dimension
void ellipsoid(int d, mat const& A, double const* InvD, mat& Accu,
               Result& result, double r2) {
    auto r = sqrt(r2);
    auto offset = Accu(d, d);
    // InvD[d] = 1/ A(d, d)
    auto from = ceil((-r-offset) * InvD[d]);
    auto to   = floor((r-offset) * InvD[d]);
    for (auto v = from; v <= to; ++v) {
        auto value  = v * A(d, d)+offset;
        auto residu = r2 - value*value;
        if (d == 0) {
            result.sum += exp(residu);
            ++result.points;
        } else {
            for (auto i=0; i<d; ++i) Accu(d-1, i) = Accu(d, i) + v * A(d, i);
            ellipsoid(d-1, A, InvD, Accu, result, residu);
        }
    }
}

// Specialised version of ellipsoid() that will only process points an octant
void ellipsoid(int d, mat const& A, double const* InvD, mat& Accu,
               Result& result, double r2, unsigned int octant) {
    auto r = sqrt(r2);
    auto offset = Accu(d, d);
    // InvD[d] = 1/ A(d, d)
    long from = ceil((-r-offset) * InvD[d]);
    long to   = floor((r-offset) * InvD[d]);
    auto points = to-from+1;
    auto base = from + points/2;
    if (points & 1) {
        auto value = base * A(d, d) + offset;
        auto residu = r2 - value * value;
        if (d == 0) {
            if ((octant & (octant - 1)) == 0) {
                result.sum += exp(residu);
                ++result.points;
            }
        } else {
            for (auto i=0; i<d; ++i) Accu(d-1, i) = Accu(d, i) + base * A(d, i);
            ellipsoid(d-1, A, InvD, Accu, result, residu, octant);
        }
        ++base;
    }
    if ((octant & 1) == 0) {
        to = from + points / 2 - 1;
        base = from;
    }
    octant /= 2;
    for (auto v = base; v <= to; ++v) {
        auto value = v * A(d,d)+offset;
        auto residu = r2 - value*value;
        if (d == 0) {
            if ((octant & (octant - 1)) == 0) {
                result.sum += exp(residu);
                ++result.points;
            }
        } else {
            for (auto i=0; i<d; ++i) Accu(d-1, i) = Accu(d, i) + v * A(d, i);
            if (octant == 1)
                ellipsoid(d-1, A, InvD, Accu, result, residu);
            else
                ellipsoid(d-1, A, InvD, Accu, result, residu, octant);
        }
    }
}

// Prepare call to ellipsoid()
Result sym_ellipsoid(int N, mat const& A, const vector<double>& InvD, double r,
                     unsigned int octant = 1) {
    auto start = chrono::steady_clock::now();
    auto r2 = r*r;

    mat Accu(N, N);
    Accu.row(N-1).zeros();

    Result result{0, 0, 0};
    // 2*octant+1 forces the points into the upper half plane, skipping 0
    // This way we use the lattice symmetry and calculate only half the points
    ellipsoid(N-1, A, &InvD[0], Accu, result, r2, 2*octant+1);
    // Compensate for the extra factor exp(r*r) we always add in ellipsoid()
    result.sum /= exp(r2);
    auto end = chrono::steady_clock::now();
    result.elapsed = chrono::duration<double>{end-start}.count();

    return result;
}

// Prepare multithreaded use of sym_ellipsoid(). Each thread gets 1 octant
Result sym_ellipsoid_t(int N, mat const& A, const vector<double>& InvD, double r, unsigned int nr_threads) {
    nr_threads = pow(2, ceil(log2(nr_threads)));

    vector<future<Result>> results;
    for (auto i=nr_threads+1; i<2*nr_threads; ++i)
        results.emplace_back(async(launch::async, sym_ellipsoid, N, ref(A), ref(InvD), r, i));
    auto result = sym_ellipsoid(N, A, InvD, r, nr_threads);
    for (auto i=0U; i<nr_threads-1; ++i) result += results[i].get();
    return result;
}

int main(int argc, char* const* argv) {
    cin.exceptions(ios::failbit | ios::badbit);
    cout.precision(12);

    double epsilon    = EPSILON; // Target absolute error
    bool inv_modular  = true;    // Use modular transform to get the best matrix
    bool lat_reduce   = true;    // Use lattice reduction to align the ellipsoid
    bool conservative = false;   // Use provable error bound instead of a guess
    bool eigen_values = false;   // Show eigenvalues
    int  threads_max  = thread::hardware_concurrency();

    int option_char;
    while ((option_char = getopt(argc, argv, "p:n:MRce")) != EOF)
        switch (option_char) {
            case 'p': epsilon      = atof(optarg); break;
            case 'n': threads_max  = atoi(optarg); break;
            case 'M': inv_modular  = false;        break;
            case 'R': lat_reduce   = false;        break;
            case 'c': conservative = true;         break;
            case 'e': eigen_values = true;         break;
            default:
              cerr << "usage: " << argv[0] << " [-p epsilon] [-n threads] [-M] [-R] [-e] [-c]" << endl;
              exit(EXIT_FAILURE);
        }
    if (optind < argc) {
        cerr << "Unexpected argument" << endl;
        exit(EXIT_FAILURE);
    }
    if (threads_max < 1) threads_max = 1;
    threads_max = pow(2, ceil(log2(threads_max)));
    cout << "Using up to " << threads_max << " threads" << endl;

    int N;
    cin >> N;

    mat P(N, N);
    for (auto& v: P) cin >> v;

    if (eigen_values) {
        vec eigval = eig_sym(P);
        cout << "Eigenvalues:\n" << eigval << endl;
    }

    // Decompose P = A * A.t()
    mat A = chol(P, "lower");

    // Calculate lattice determinant
    double lat_det = 1;
    for (auto i=0; i<N; ++i) {
        if (A(i,i) <= 0) throw(logic_error("Diagonal not Positive"));
        lat_det *= A(i,i);
    }
    cout << "Lattice determinant=" << lat_det << endl;

    auto factor = lat_det / pow(M_PI, N/2.0);
    if (inv_modular && factor < 1) {
        epsilon *= factor;
        cout << "Lattice determinant is small. Using inverse instead. Factor=" << factor << endl;
        P = M_PI * M_PI * inv(P);
        A = chol(P, "lower");
        // We could simple calculate the new lat_det as pow(M_PI,N)/lat_det
        lat_det = 1;
        for (auto i=0; i<N; ++i) {
            if (A(i,i) <= 0) throw(logic_error("Diagonal not Positive"));
            lat_det *= A(i,i);
        }
        cout << "New lattice determinant=" << lat_det << endl;
    } else
        factor = 1;

    // Prepare for lattice reduction.
    // Since the library works on integer lattices we will scale up our matrix
    double min = INFINITY;
    for (auto i=0; i<N; ++i) {
        for (auto j=0; j<N;++j)
            if (A(i,j) != 0 && abs(A(i,j) < min)) min = abs(A(i,j));
    }

    auto upscale = UPSCALE/min;
    mat_ZZ a;
    a.SetDims(N,N);
    for (auto i=0; i<N; ++i)
        for (auto j=0; j<N;++j) a[i][j] = to_ZZ(A(i,j)*upscale);

    // Finally do the actual lattice reduction
    mat_ZZ u;
    auto rank = G_BKZ_FP(a, u);
    if (rank != N) throw(logic_error("Matrix is singular"));
    mat U(N,N);
    for (auto i=0; i<N;++i)
        for (auto j=0; j<N;++j) U(i,j) = to_double(u[i][j]);

    // There should now be a short lattice vector at row 0
    ZZ sum = to_ZZ(0);
    for (auto j=0; j<N;++j) sum += a[0][j]*a[0][j];
    auto rho = sqrt(to_double(sum))/upscale;
    cout << "Rho=" << rho << " (integer square " <<
        rho*rho << " ~ " <<
        static_cast<int>(rho*rho+0.5) << ")" << endl;

    // Lattice reduction doesn't gain us anything conceptually.
    // The same number of points is evaluated for the same exponential values
    // However working through the ellipsoid dimensions from large lattice
    // base vectors to small makes ellipsoid() a *lot* faster
    if (lat_reduce) {
        mat B = U * A;
        P = B * B.t();
        A = chol(P, "lower");
        if (eigen_values) {
            vec eigval = eig_sym(P);
            cout << "New eigenvalues:\n" << eigval << endl;
        }
    }

    vector<double> InvD(N);;
    for (auto i=0; i<N; ++i) InvD[i] = 1 / A(i, i);

    // Calculate radius needed for target precision
    auto r = radius(N, rho, lat_det, epsilon);
    cout << "Safe R=" << r << endl;

    auto nr_threads = threads_max;
    Result result;
    if (conservative) {
        // Walk all points inside the ellipsoid with transformed radius r
        result = sym_ellipsoid_t(N, A, InvD, r, nr_threads);
    } else {
        // First grow the radius until we saw POINTS_MIN points or reach the
        // target radius
        double i = floor(N * log2(r/rho) / log2(GROW));
        if (i < 0) i = 0;
        auto R = r * pow(GROW, -i/N);
        cout << "Initial R=" << R << endl;
        result = sym_ellipsoid_t(N, A, InvD, R, nr_threads);
        nr_threads = result.elapsed < THREAD_SEC ? 1 : threads_max;
        auto max_new_points = result.points;
        while (--i >= 0 && result.points < POINTS_MIN) {
            R = r * pow(GROW, -i/N);
            auto change = result;
            result = sym_ellipsoid_t(N, A, InvD, R, nr_threads);
            nr_threads = result.elapsed < THREAD_SEC ? 1 : threads_max;
            change = result - change;

            if (change.points > max_new_points) max_new_points = change.points;
        }

        // Now we have enough points that it's worth bothering to use threads
        while (--i >= 0) {
            R = r * pow(GROW, -i/N);
            auto change = result;
            result = sym_ellipsoid_t(N, A, InvD, R, nr_threads);
            nr_threads = result.elapsed < THREAD_SEC ? 1 : threads_max;
            change = result - change;
            // This is probably too crude and might misestimate the error
            // I've never seen it fail though
            if (change.points > max_new_points) {
                max_new_points = change.points;
                if (change.sum < epsilon/2) break;
            }
        }
        cout << "Final R=" << R << endl;
    }

    // We calculated half the points and skipped 0.
    result.sum = 2*result.sum+1;

    // Modular transform factor
    result.sum /= factor;

    // Report result
    cout <<
        "Evaluated " << result.points << " points\n" <<
        "Sum = " << result.sum << endl;
}
Ton Hospel
fonte
Isso é muito impressionante e muito melhor do que a abordagem ingênua em minha opinião. Estou ansioso para a documentação :)
1
@TonHospel Você pode nos contar um pouco mais sobre como você cria os limites?
flawr
2
Estou usando o Arch Linux e precisava da -lgslcblasbandeira para compilar. Resposta incrível pelo caminho!
Rhyzomatic
2

Python 3

12 segundos n = 8 no meu computador, ubuntu 4 core.

Realmente ingênuo, não tenho idéia do que estou fazendo.

from itertools import product
from math import e

P = [[ 6., -3.,  3., -3.,  3.],
     [-3.,  6., -5.,  5., -5.],
     [ 3., -5.,  6., -5.,  5.],
     [-3.,  5., -5.,  6., -5.],
     [ 3., -5.,  5., -5.,  6.]]

N = 2

n = [1]

while e** -n[-1] > 0.0001:
    n = []
    for x in product(list(range(-N, N+1)), repeat = len(P)):
        n.append(sum(k[0] * k[1] for k in zip([sum(j[0] * j[1] for j in zip(i, x)) for i in P], x)))
    N += 1

print(sum(e** -i for i in n))

Isso continuará aumentando o alcance Zusado até obter uma resposta boa o suficiente. Eu escrevi minha própria multiplicação de matrizes, prolly deve usar numpy.

Maltysen
fonte
Obrigado ! Você pode mostrar algumas saídas e tempos no seu computador?
Seu código é executado em pypy, o que é ótimo e rápido. Infelizmente, [[6.0, -1.0, -3.0, 1.0, 3.0, -1.0, -3.0, 1.0, 3.0], [-1.0, 6.0, -1.0, -5.0, 1.0, 5.0, -1.0, -5.0, 1.0 ], [-3,0, -1,0, 6,0, 1,0, -5,0, -1,0, 5,0, 1,0, -5,0], [1,0, -5,0, 1,0, 6,0, -1,0, -5,0, 1,0, 5,0, -1,0] , [3.0, 1.0, -5.0, -1.0, 6.0, 1.0, -5.0, -1.0, 5.0], [-1.0, 5.0, -1.0, -5.0, 1.0, 6.0, -1.0, -5.0, 1.0], [-3,0, -1,0, 5,0, 1,0, -5,0, -1,0, 6,0, 1,0, -5,0], [1,0, -5,0, 1,0, 5,0, -1,0, -5,0, 1,0, 6,0, -1,0], [ 3,0, 1,0, -5,0, -1,0, 5,0, 1,0, -5,0, -1,0, 6,0]] fornece apenas a resposta errada.
8.1443647932-8.14381938863 = 0.00054540457> 0.0001.
3
@ Maltysen Seu programa verifica apenas se o último termo é menor que a precisão especificada. Mas o erro que você comete é muito maior, pois você também deve considerar a soma de todos os outros termos do erro!
flawr