Eu tenho uma consulta bastante complexa que é executada em apenas alguns segundos sozinha, mas quando envolvida em uma função com valor de tabela, é muito mais lenta; Na verdade, eu não deixei terminar, mas é executado por até dez minutos sem terminar. A única alteração é substituir duas variáveis de data (inicializadas com literais de data) por parâmetros de data:
É executado em sete segundos
DECLARE @StartDate DATE = '2011-05-21'
DECLARE @EndDate DATE = '2011-05-23'
DECLARE @Data TABLE (...)
INSERT INTO @Data(...) SELECT...
SELECT * FROM @Data
É executado pelo menos dez minutos
CREATE FUNCTION X (@StartDate DATE, @EndDate DATE)
RETURNS TABLE AS RETURN
SELECT ...
SELECT * FROM X ('2011-05-21', '2011-05-23')
Eu já havia escrito a função como um TVF de múltiplas instruções com uma cláusula RETURNS @Data TABLE (...), mas trocar isso pela estrutura em linha não fez uma alteração perceptível. O tempo de longo prazo do TVF é o SELECT * FROM X
tempo real ; na verdade, criar o UDF leva apenas alguns segundos.
Eu poderia postar a consulta em questão, mas é um pouco longa (~ 165 linhas) e, com base no sucesso da primeira abordagem, suspeito que algo está acontecendo. Percorrendo os planos de execução, eles parecem idênticos.
Tentei dividir a consulta em seções menores, sem alterações. Nenhuma seção isolada leva mais de alguns segundos quando executada sozinha, mas o TVF ainda trava.
Vejo uma pergunta muito semelhante, /programming/4190506/sql-server-2005-table-valued-function-weird-performance , mas não tenho certeza de que a solução se aplique. Talvez alguém tenha visto esse problema e saiba uma solução mais geral? Obrigado!
Aqui estão os dm_exec_requests após vários minutos de processamento:
session_id 59
request_id 0
start_time 40688.46517
status running
command UPDATE
sql_handle 0x030015002D21AF39242A1101ED9E00000000000000000000
statement_start_offset 10962
statement_end_offset 16012
plan_handle 0x050015002D21AF3940C1E6B0040000000000000000000000
database_id 21
user_id 1
connection_id 314AE0E4-A1FB-4602-BF40-02D857BAD6CF
blocking_session_id 0
wait_type NULL
wait_time 0
last_wait_type SOS_SCHEDULER_YIELD
wait_resource
open_transaction_count 0
open_resultset_count 1
transaction_id 48030651
context_info 0x
percent_complete 0
estimated_completion_time 0
cpu_time 344777
total_elapsed_time 348632
scheduler_id 7
task_address 0x000000045FC85048
reads 1549
writes 13
logical_reads 30331425
text_size 2147483647
language us_english
date_format mdy
date_first 7
quoted_identifier 1
arithabort 1
ansi_null_dflt_on 1
ansi_defaults 0
ansi_warnings 1
ansi_padding 1
ansi_nulls 1
concat_null_yields_null 1
transaction_isolation_level 2
lock_timeout -1
deadlock_priority 0
row_count 105
prev_error 0
nest_level 1
granted_query_memory 170
executing_managed_code 0
group_id 2
query_hash 0xBE6A286546AF62FC
query_plan_hash 0xD07630B947043AF0
Aqui está a consulta completa:
CREATE FUNCTION Routine.MarketingDashboardECommerceBase (@StartDate DATE, @EndDate DATE)
RETURNS TABLE AS RETURN
WITH RegionsByCode AS (SELECT CountryCode, MIN(Region) AS Region FROM Staging.Volusion.MarketingRegions GROUP BY CountryCode)
SELECT
D.Date, Div.Division, Region.Region, C.Category1, C.Category2, C.Category3,
COALESCE(V.Visits, 0) AS Visits,
COALESCE(Dem.Demos, 0) AS Demos,
COALESCE(S.GrossStores, 0) AS GrossStores,
COALESCE(S.PaidStores, 0) AS PaidStores,
COALESCE(S.NetStores, 0) AS NetStores,
COALESCE(S.StoresActiveNow, 0) AS StoresActiveNow
-- This line causes the run time to climb from a few seconds to over an hour!
--COALESCE(V.Visits, 0) * COALESCE(ACS.AvgClickCost, GAAC.AvgAdCost, 0.00) AS TotalAdCost
-- This line alone does not inflate the run time
--ACS.AvgClickCost
-- This line is enough to increase the run time to at least a couple minutes
--GAAC.AvgAdCost
FROM
--Dates AS D
(SELECT SQLDate AS Date FROM Dates WHERE SQLDate BETWEEN @StartDate AND @EndDate) AS D
CROSS JOIN (SELECT 'UK' AS Division UNION SELECT 'US' UNION SELECT 'IN' UNION SELECT 'Unknown') AS Div
CROSS JOIN (SELECT Category1, Category2, Category3 FROM Routine.MarketingDashboardCampaignMap UNION SELECT 'Unknown', 'Unknown', 'Unknown') AS C
CROSS JOIN (SELECT DISTINCT Region FROM Staging.Volusion.MarketingRegions) AS Region
-- Visitors
LEFT JOIN
(
SELECT
V.Date,
CASE WHEN V.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN V.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END AS Division,
COALESCE(MR.Region, 'Unknown') AS Region,
C.Category1, C.Category2, C.Category3,
SUM(V.Visits) AS Visits
FROM
RawData.GoogleAnalytics.Visits AS V
INNER JOIN Routine.MarketingDashboardCampaignMap AS C ON V.LandingPage = C.LandingPage AND V.Campaign = C.Campaign AND V.Medium = C.Medium AND V.Referrer = C.Referrer AND V.Source = C.Source
LEFT JOIN Staging.Volusion.MarketingRegions AS MR ON V.Country = MR.CountryName
WHERE
V.Date BETWEEN @StartDate AND @EndDate
GROUP BY
V.Date,
CASE WHEN V.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN V.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END,
COALESCE(MR.Region, 'Unknown'), C.Category1, C.Category2, C.Category3
) AS V ON D.Date = V.Date AND Div.Division = V.Division AND Region.Region = V.Region AND C.Category1 = V.Category1 AND C.Category2 = V.Category2 AND C.Category3 = V.Category3
-- Demos
LEFT JOIN
(
SELECT
OD.SQLDate,
G.Division,
COALESCE(MR.Region, 'Unknown') AS Region,
COALESCE(C.Category1, 'Unknown') AS Category1,
COALESCE(C.Category2, 'Unknown') AS Category2,
COALESCE(C.Category3, 'Unknown') AS Category3,
SUM(D.Demos) AS Demos
FROM
Demos AS D
INNER JOIN Orders AS O ON D."Order" = O."Order"
INNER JOIN Dates AS OD ON O.OrderDate = OD.DateSerial
INNER JOIN MarketingSources AS MS ON D.Source = MS.Source
LEFT JOIN RegionsByCode AS MR ON MS.CountryCode = MR.CountryCode
LEFT JOIN
(
SELECT
G.TransactionID,
MIN (
CASE WHEN G.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN G.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END
) AS Division
FROM
RawData.GoogleAnalytics.Geography AS G
WHERE
TransactionDate BETWEEN @StartDate AND @EndDate
AND NOT EXISTS (SELECT * FROM RawData.GoogleAnalytics.Geography AS G2 WHERE G.TransactionID = G2.TransactionID AND G2.EffectiveDate > G.EffectiveDate)
GROUP BY
G.TransactionID
) AS G ON O.VolusionOrderID = G.TransactionID
LEFT JOIN RawData.GoogleAnalytics.Referrers AS R ON O.VolusionOrderID = R.TransactionID AND NOT EXISTS (SELECT * FROM RawData.GoogleAnalytics.Referrers AS R2 WHERE R.TransactionID = R2.TransactionID AND R2.EffectiveDate > R.EffectiveDate)
LEFT JOIN Routine.MarketingDashboardCampaignMap AS C ON MS.LandingPage = C.LandingPage AND MS.Campaign = C.Campaign AND MS.Medium = C.Medium AND COALESCE(R.ReferralPath, '(not set)') = C.Referrer AND MS.SourceName = C.Source
WHERE
O.IsDeleted = 'No'
AND OD.SQLDate BETWEEN @StartDate AND @EndDate
GROUP BY
OD.SQLDate,
G.Division,
COALESCE(MR.Region, 'Unknown'),
COALESCE(C.Category1, 'Unknown'),
COALESCE(C.Category2, 'Unknown'),
COALESCE(C.Category3, 'Unknown')
) AS Dem ON D.Date = Dem.SQLDate AND Div.Division = Dem.Division AND Region.Region = Dem.Region AND C.Category1 = Dem.Category1 AND C.Category2 = Dem.Category2 AND C.Category3 = Dem.Category3
-- Stores
LEFT JOIN
(
SELECT
OD.SQLDate,
CASE WHEN O.VolusionCountryCode = 'GB' THEN 'UK'
WHEN A.CountryShortName IN ('U.S.', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END AS Division,
COALESCE(MR.Region, 'Unknown') AS Region,
COALESCE(CpM.Category1, 'Unknown') AS Category1,
COALESCE(CpM.Category2, 'Unknown') AS Category2,
COALESCE(CpM.Category3, 'Unknown') AS Category3,
SUM(S.Stores) AS GrossStores,
SUM(CASE WHEN O.DatePaid <> -1 THEN 1 ELSE 0 END) AS PaidStores,
SUM(CASE WHEN O.DatePaid <> -1 AND CD.WeekEnding <> OD.WeekEnding THEN 1 ELSE 0 END) AS NetStores,
SUM(CASE WHEN O.DatePaid <> -1 THEN SH.ActiveStores ELSE 0 END) AS StoresActiveNow
FROM
Stores AS S
INNER JOIN Orders AS O ON S."Order" = O."Order"
INNER JOIN Dates AS OD ON O.OrderDate = OD.DateSerial
INNER JOIN Dates AS CD ON O.CancellationDate = CD.DateSerial
INNER JOIN Customers AS C ON O.CustomerNow = C.Customer
INNER JOIN MarketingSources AS MS ON C.Source = MS.Source
INNER JOIN StoreHistory AS SH ON S.MostRecentHistory = SH.History
INNER JOIN Addresses AS A ON C.Address = A.Address
LEFT JOIN RegionsByCode AS MR ON MS.CountryCode = MR.CountryCode
LEFT JOIN Routine.MarketingDashboardCampaignMap AS CpM ON CpM.LandingPage = 'N/A' AND MS.Campaign = CpM.Campaign AND MS.Medium = CpM.Medium AND CpM.Referrer = 'N/A' AND MS.SourceName = CpM.Source
WHERE
O.IsDeleted = 'No'
AND OD.SQLDate BETWEEN @StartDate AND @EndDate
GROUP BY
OD.SQLDate,
CASE WHEN O.VolusionCountryCode = 'GB' THEN 'UK'
WHEN A.CountryShortName IN ('U.S.', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END,
COALESCE(MR.Region, 'Unknown'),
COALESCE(CpM.Category1, 'Unknown'),
COALESCE(CpM.Category2, 'Unknown'),
COALESCE(CpM.Category3, 'Unknown')
) AS S ON D.Date = S.SQLDate AND Div.Division = S.Division AND Region.Region = S.Region AND C.Category1 = S.Category1 AND C.Category2 = S.Category2 AND C.Category3 = S.Category3
-- Google Analytics spend
LEFT JOIN
(
SELECT
AC.Date, C.Category1, C.Category2, C.Category3, SUM(AC.AdCost) / SUM(AC.Visits) AS AvgAdCost
FROM
RawData.GoogleAnalytics.AdCosts AS AC
INNER JOIN
(
SELECT Campaign, Medium, Source, MIN(Category1) AS Category1, MIN(Category2) AS Category2, MIN(Category3) AS Category3
FROM Routine.MarketingDashboardCampaignMap
WHERE Category1 <> 'Affiliate'
GROUP BY Campaign, Medium, Source
) AS C ON AC.Campaign = C.Campaign AND AC.Medium = C.Medium AND AC.Source = C.Source
WHERE
AC.Date BETWEEN @StartDate AND @EndDate
GROUP BY
AC.Date, C.Category1, C.Category2, C.Category3
HAVING
SUM(AC.AdCost) > 0.00 AND SUM(AC.Visits) > 0
) AS GAAC ON D.Date = GAAC.Date AND C.Category1 = GAAC.Category1 AND C.Category2 = GAAC.Category2 AND C.Category3 = GAAC.Category3
-- adCenter spend
LEFT JOIN
(
SELECT Date, SUM(Spend) / SUM(Clicks) AS AvgClickCost
FROM RawData.AdCenter.Spend
WHERE Date BETWEEN @StartDate AND @EndDate
GROUP BY Date
HAVING SUM(Spend) > 0.00 AND SUM(Clicks) > 0
) AS ACS ON D.Date = ACS.Date AND C.Category1 = 'PPC' AND C.Category2 = 'adCenter' AND C.Category3 = 'N/A'
WHERE
V.Visits > 0 OR Dem.Demos > 0 OR S.GrossStores > 0
GO
SELECT * FROM Routine.MarketingDashboardECommerceBase('2011-05-21', '2011-05-23')
fonte
Respostas:
Eu isolei o problema em uma linha na consulta. Lembre-se de que a consulta tem 160 linhas e estou incluindo as tabelas relevantes de qualquer maneira, se eu desativar essa linha da cláusula SELECT:
... o tempo de execução cai de 63 minutos para cinco segundos (incluir um CTE tornou-o um pouco mais rápido que a consulta original de sete segundos). A inclusão de
ACS.AvgClickCost
ouGAAC.AvgAdCost
faz com que o tempo de execução exploda. O que o torna especialmente estranho é que esses campos vêm de duas subconsultas que possuem, respectivamente, dez linhas e três! Cada um deles é executado em zero segundos quando executado independentemente, e com a contagem de linhas sendo tão curta, eu esperaria que o tempo de junção fosse trivial mesmo usando loops aninhados.Alguma sugestão sobre por que esse cálculo aparentemente inofensivo lançaria um TVF completamente, enquanto ele é executado muito rapidamente como uma consulta independente?
fonte
GAAC.AvgAdCost
(hoje; ontemACS.AvgClickCost
também foi um problema), de modo que a subconsulta parece estar descartando o plano de execução .COALESCE()
porISNULL()
para ajudar o otimizador de consultas a elaborar melhores planos. Eu acho que tinha a ver comISNULL()
ter um tipo de saída mais previsível do queCOALESCE()
. Vale a pena tentar? Sei que isso é vago, mas em nossa experiência limitada, influenciar o otimizador de consultas em direção a melhores planos parece uma arte imprecisa; portanto, tentar um monte de idéias loucas vagas por desespero é a única maneira de progredir.Espero que isso esteja relacionado ao parâmetro sniffing.
Algumas conversas sobre os problemas estão aqui (e você pode pesquisar no SO para detectar os parâmetros.)
http://blogs.msdn.com/b/queryoptteam/archive/2006/03/31/565991.aspx
fonte
ARITHABORT
talvez?) Do que o Reporting Services e / ou o jTDS; portanto, um deles às vezes apresentava um plano "ruim", mas outros iriam (irritantemente) fazer o mesmo "na mesma consulta".)Infelizmente, o mecanismo de otimização de consultas do SQL não pode ver as funções internas.
Então, eu usaria o plano de execução do rápido para descobrir quais dicas aplicar no TF. Enxágue e repita até que o plano de execução do TF se aproxime do mais rápido.
http://sqlblog.com/blogs/tibor_karaszi/archive/2008/08/29/execution-plan-re-use-sp-executesql-and-tsql-variables.aspx
fonte
Quais são as diferenças nesses valores, por favor?
Demonstrou-se que esses (especialmente arithabort) afetam seriamente o desempenho da consulta dessa maneira.
fonte
arithabort
si mesma, não é? Desde o SQL Server 2005, pensei que essa configuração não tivesse efeito enquanto estivesse ativaansi_warnings
. (Em 2000 exibições indexadas não seria usado se configurado incorretamente)arithabort
cenário deveria ter uma influência tão dramática no desempenho, por isso estou um pouco cético sobre isso no momento.