Em nosso aplicativo, temos uma grade na qual os usuários podem paginar um grande número de registros (10 a 20 milhões). A grade suporta a classificação em ordem crescente e decrescente em várias colunas (mais de 20). Muitos dos valores também não são exclusivos e, portanto, o aplicativo também classifica por ID como um desempatador para garantir que as linhas sempre apareçam na mesma página. Como exemplo, se o usuário desejar classificar por tamanho do widget (começando pelo maior), o aplicativo gera uma consulta que se parece um pouco com isso:
SELECT TOP 30
* -- (Pretend that there is a list of columns here)
FROM Test
-- WHERE widgetSize > 100
ORDER BY
widgetSize DESC,
id ASC
Essa consulta leva aproximadamente 15s para ser executada (com dados em cache), o principal do custo parece ser a classificação de aproximadamente 1,3 milhão de linhas por widgetSize. Em uma tentativa de ajustar essa consulta, descobri que, se eu adicionar uma WHERE
cláusula restrita apenas ao maior widgetSizes (comentado na consulta acima), a consulta leva apenas ~ 800ms (todos os 50.000 resultados principais têm um tamanho de widget> 100) .
Por que a consulta sem a WHERE
cláusula é muito mais lenta? Eu verifiquei as estatísticas na coluna widgetSize e elas mostram que as 739 linhas principais têm um WidgetSize> 506. Como apenas 30 linhas são necessárias, o SQL Server não pode usar essas informações para deduzir que ele só precisa classificar linhas com um tamanho de widget qual é grande?
Eu sei que posso fazer com que essa consulta específica seja executada mais rapidamente adicionando um índice widgetSize
e id
, no entanto, esse índice é útil apenas nesse cenário específico e se torna inútil se (por exemplo) o usuário reverter a direção da classificação. Esta tabela contém muitas colunas adicionais e cada índice é grande (~ 200mb); portanto, não posso adicionar um índice para todas as ordens de classificação possíveis.
Existe alguma maneira de obter essas consultas para executar sem adicionar um índice para cada ordem de classificação possível? (o usuário pode classificar por qualquer uma das mais de 20 colunas)
O script a seguir cria a tabela acima e a preenche com alguns dados representativos. A tabela é muito mais estreita que a tabela real, no entanto, ainda demonstra o desempenho que estou vendo. No meu PC, a consulta com a cláusula where leva ~ 200ms, enquanto a consulta sem a chamada where leva ~ 800ms.
Aviso: O banco de dados resultante após a execução desse script possui um tamanho de ~ 2 GB.
CREATE TABLE Test
(
id INT NOT NULL IDENTITY(1,1) PRIMARY KEY,
widgetSize INT NOT NULL
)
CREATE TABLE #Data
(
widgetSize INT NOT NULL,
recordCount INT NOT NULL
)
INSERT INTO #Data (widgetSize, recordCount)
VALUES
(40826,1),
(30317,1),
(28513,1),
(24255,1),
(20247,1),
(20245,1),
(16445,1),
(15719,1),
(8489,1),
(8486,1),
(4753,1),
(4424,1),
(4409,1),
(3738,1),
(3732,1),
(3725,4),
(3691,1),
(3678,1),
(3655,1),
(3653,3),
(3575,1),
(3572,1),
(3569,1),
(2919,1),
(2903,1),
(2804,1),
(2795,1),
(2765,1),
(2732,1),
(2731,1),
(2677,1),
(2631,1),
(2624,1),
(2548,1),
(2544,1),
(2531,2),
(2516,3),
(2512,1),
(2503,1),
(2502,1),
(2472,1),
(2467,2),
(2460,1),
(2452,1),
(2442,2),
(2439,1),
(2412,1),
(2411,1),
(2405,1),
(2382,1),
(2375,1),
(2348,1),
(2341,1),
(2322,1),
(2321,1),
(2316,1),
(2314,1),
(2291,1),
(2284,1),
(2258,1),
(2251,1),
(2232,1),
(2229,7),
(2222,1),
(2204,1),
(2186,1),
(2173,1),
(2145,2),
(2143,1),
(2113,2),
(2110,1),
(2089,1),
(2082,1),
(2080,1),
(2056,1),
(2054,1),
(2052,1),
(2019,1),
(1991,2),
(1900,1),
(1870,1),
(1869,1),
(1856,1),
(1826,1),
(1802,1),
(1792,1),
(1786,1),
(1784,1),
(1781,1),
(1780,1),
(1771,1),
(1758,1),
(1756,1),
(1749,2),
(1742,1),
(1740,2),
(1729,1),
(1728,1),
(1726,1),
(1718,1),
(1717,1),
(1707,1),
(1701,2),
(1696,1),
(1694,1),
(1688,1),
(1679,1),
(1649,2),
(1632,1),
(1621,1),
(1616,1),
(1588,2),
(1584,1),
(1554,2),
(1539,1),
(1525,1),
(1516,1),
(1515,1),
(1476,1),
(1467,1),
(1463,2),
(1406,1),
(1390,1),
(1370,1),
(1350,1),
(1338,1),
(1335,2),
(1326,1),
(1325,1),
(1316,2),
(1315,1),
(1311,3),
(1308,1),
(1305,1),
(1302,1),
(1299,1),
(1298,1),
(1285,1),
(1283,1),
(1282,1),
(1270,1),
(1261,1),
(1255,1),
(1251,1),
(1250,1),
(1242,1),
(1220,1),
(1219,1),
(1217,1),
(1216,1),
(1193,1),
(1190,1),
(1164,2),
(1147,1),
(1137,3),
(1134,2),
(1133,1),
(1128,2),
(1120,1),
(1113,1),
(1105,1),
(1099,6),
(1098,1),
(1096,2),
(1095,2),
(1092,3),
(1082,1),
(1061,2),
(1050,1),
(1040,1),
(1007,1),
(987,1),
(966,1),
(960,1),
(954,1),
(952,1),
(951,1),
(950,1),
(924,1),
(923,2),
(917,1),
(916,2),
(907,2),
(902,1),
(900,1),
(896,1),
(892,1),
(889,1),
(879,2),
(876,1),
(874,3),
(868,2),
(861,8),
(860,2),
(854,4),
(853,1),
(852,1),
(851,6),
(847,1),
(846,1),
(843,13),
(839,3),
(838,1),
(837,3),
(825,3),
(824,1),
(820,1),
(819,1),
(818,5),
(817,9),
(814,2),
(811,13),
(809,1),
(807,1),
(804,4),
(798,4),
(795,1),
(794,7),
(791,2),
(789,2),
(788,2),
(782,7),
(778,1),
(770,1),
(769,3),
(768,1),
(763,2),
(760,1),
(756,6),
(755,5),
(753,5),
(751,1),
(748,1),
(747,3),
(746,2),
(745,1),
(744,2),
(743,3),
(742,2),
(741,3),
(737,3),
(735,1),
(734,1),
(733,2),
(731,2),
(730,1),
(728,1),
(727,2),
(726,1),
(724,1),
(721,1),
(718,2),
(714,3),
(710,1),
(707,8),
(706,2),
(703,1),
(697,3),
(696,2),
(692,2),
(686,1),
(684,1),
(683,1),
(680,2),
(678,2),
(674,2),
(672,2),
(671,1),
(669,1),
(668,2),
(667,2),
(666,1),
(665,1),
(663,3),
(662,1),
(661,2),
(658,1),
(657,2),
(656,1),
(655,1),
(654,2),
(652,2),
(651,1),
(650,3),
(649,4),
(644,3),
(643,1),
(642,1),
(641,1),
(637,2),
(636,1),
(632,1),
(631,1),
(630,1),
(629,3),
(627,1),
(625,2),
(624,2),
(623,1),
(620,1),
(618,5),
(617,3),
(616,1),
(615,2),
(614,2),
(612,7),
(605,2),
(603,5),
(601,3),
(595,1),
(594,1),
(593,1),
(590,1),
(588,6),
(587,3),
(586,3),
(583,1),
(582,1),
(580,3),
(578,1),
(577,2),
(576,1),
(575,2),
(574,2),
(573,1),
(572,2),
(571,3),
(570,1),
(569,1),
(568,2),
(567,4),
(566,4),
(565,2),
(564,2),
(563,2),
(562,1),
(560,1),
(559,2),
(558,1),
(557,3),
(556,3),
(555,2),
(554,3),
(553,1),
(552,4),
(551,4),
(550,1),
(549,3),
(548,2),
(547,2),
(546,8),
(544,1),
(543,3),
(542,8),
(541,1),
(538,8),
(536,1),
(534,1),
(533,2),
(532,1),
(531,1),
(530,1),
(529,11),
(528,1),
(527,3),
(526,1),
(525,2),
(524,5),
(523,3),
(522,1),
(521,2),
(520,5),
(518,12),
(517,5),
(515,5),
(514,3),
(513,1),
(511,16),
(510,6),
(509,1),
(508,2),
(507,1),
(506,41),
(505,2),
(504,7),
(503,7),
(502,3),
(501,3),
(500,8),
(499,1),
(498,4),
(497,6),
(496,10),
(495,8),
(494,4),
(493,5),
(492,3),
(491,3),
(490,6),
(489,6),
(488,2),
(487,3),
(486,4),
(485,6),
(484,2),
(483,5),
(482,12),
(481,3),
(480,9),
(479,10),
(478,6),
(477,5),
(476,19),
(475,5),
(474,4),
(473,3),
(472,3),
(471,8),
(470,5),
(469,11),
(468,2),
(467,1),
(466,5),
(465,9),
(464,13),
(463,10),
(462,5),
(461,12),
(460,1),
(459,5),
(458,3),
(457,1),
(456,13),
(455,3),
(454,11),
(453,5),
(452,6),
(451,20),
(450,51),
(449,12),
(448,8),
(447,6),
(446,6),
(445,6),
(444,16),
(443,80),
(442,5),
(441,10),
(440,5),
(439,12),
(438,14),
(437,58),
(436,2),
(435,13),
(434,7),
(433,5),
(432,16),
(431,7),
(430,30),
(429,21),
(428,6),
(427,18),
(426,2),
(425,7),
(424,21),
(423,11),
(422,4),
(421,8),
(420,8),
(419,7),
(418,15),
(417,9),
(416,22),
(415,6),
(414,22),
(413,10),
(412,15),
(411,9),
(410,68),
(409,62),
(408,5),
(407,7),
(406,12),
(405,12),
(404,8),
(403,8),
(402,31),
(401,24),
(400,11),
(399,3),
(398,16),
(397,19),
(396,6),
(395,18),
(394,3),
(393,2),
(392,18),
(391,20),
(390,14),
(389,12),
(388,26),
(387,14),
(386,27),
(385,23),
(384,25),
(383,25),
(382,21),
(381,69),
(380,14),
(379,34),
(378,41),
(377,24),
(376,27),
(375,13),
(374,35),
(373,32),
(372,43),
(371,28),
(370,30),
(369,27),
(368,21),
(367,23),
(366,36),
(365,45),
(364,42),
(363,82),
(362,16),
(361,33),
(360,29),
(359,15),
(358,19),
(357,17),
(356,29),
(355,11),
(354,18),
(353,29),
(352,5),
(351,6),
(350,9),
(349,17),
(348,11),
(347,17),
(346,16),
(345,20),
(344,15),
(343,14),
(342,19),
(341,7),
(340,13),
(339,13),
(338,23),
(337,13),
(336,15),
(335,9),
(334,6),
(333,10),
(332,30),
(331,22),
(330,21),
(329,13),
(328,8),
(327,10),
(326,50),
(325,16),
(324,18),
(323,17),
(322,26),
(321,18),
(320,24),
(319,18),
(318,20),
(317,6),
(316,19),
(315,17),
(314,14),
(313,39),
(312,29),
(311,23),
(310,21),
(309,27),
(308,27),
(307,14),
(306,19),
(305,27),
(304,42),
(303,29),
(302,38),
(301,47),
(300,19),
(299,9),
(298,14),
(297,46),
(296,11),
(295,20),
(294,20),
(293,16),
(292,23),
(291,27),
(290,35),
(289,20),
(288,15),
(287,21),
(286,22),
(285,33),
(284,24),
(283,11),
(282,25),
(281,17),
(280,47),
(279,22),
(278,15),
(277,26),
(276,18),
(275,20),
(274,29),
(273,53),
(272,28),
(271,17),
(270,20),
(269,30),
(268,15),
(267,40),
(266,143),
(265,35),
(264,11),
(263,30),
(262,32),
(261,39),
(260,52),
(259,96),
(258,31),
(257,18),
(256,35),
(255,52),
(254,24),
(253,35),
(252,64),
(251,34),
(250,21),
(249,45),
(248,52),
(247,64),
(246,131),
(245,108),
(244,36),
(243,34),
(242,45),
(241,50),
(240,38),
(239,57),
(238,55),
(237,62),
(236,31),
(235,82),
(234,43),
(233,40),
(232,43),
(231,58),
(230,38),
(229,38),
(228,38),
(227,69),
(226,23),
(225,54),
(224,90),
(223,91),
(222,60),
(221,277),
(220,70),
(219,33),
(218,42),
(217,100),
(216,185),
(215,98),
(214,108),
(213,57),
(212,54),
(211,77),
(210,150),
(209,175),
(208,46),
(207,199),
(206,158),
(205,68),
(204,85),
(203,129),
(202,75),
(201,59),
(200,73),
(199,123),
(198,72),
(197,155),
(196,193),
(195,66),
(194,119),
(193,119),
(192,80),
(191,80),
(190,96),
(189,284),
(188,108),
(187,79),
(186,118),
(185,93),
(184,92),
(183,194),
(182,152),
(181,96),
(180,134),
(179,108),
(178,121),
(177,91),
(176,140),
(175,262),
(174,159),
(173,121),
(172,134),
(171,118),
(170,116),
(169,168),
(168,297),
(167,171),
(166,214),
(165,474),
(164,176),
(163,131),
(162,215),
(161,310),
(160,175),
(159,183),
(158,208),
(157,377),
(156,248),
(155,804),
(154,452),
(153,133),
(152,224),
(151,826),
(150,299),
(149,367),
(148,427),
(147,413),
(146,1190),
(145,796),
(144,450),
(143,334),
(142,308),
(141,707),
(140,580),
(139,601),
(138,403),
(137,351),
(136,411),
(135,547),
(134,528),
(133,506),
(132,306),
(131,485),
(130,419),
(129,832),
(128,1034),
(127,894),
(126,1168),
(125,313),
(124,787),
(123,1079),
(122,984),
(121,1086),
(120,1525),
(119,1007),
(118,539),
(117,1596),
(116,1307),
(115,2081),
(114,1256),
(113,2200),
(112,1184),
(111,535),
(110,1404),
(109,1219),
(108,1675),
(107,1765),
(106,1784),
(105,890),
(104,931),
(103,1769),
(102,1720),
(101,1528),
(100,1639),
(99,1955),
(98,1434),
(97,979),
(96,2295),
(95,2516),
(94,3043),
(93,2972),
(92,3493),
(91,1873),
(90,1047),
(89,2228),
(88,2328),
(87,1804),
(86,5243),
(85,2256),
(84,1602),
(83,898),
(82,2025),
(81,2207),
(80,2559),
(79,2720),
(78,3302),
(77,5410),
(76,994),
(75,2767),
(74,3343),
(73,3951),
(72,4116),
(71,6164),
(70,2992),
(69,2066),
(68,18269),
(67,13159),
(66,13142),
(65,7387),
(64,8759),
(63,4887),
(62,1847),
(61,10239),
(60,6990),
(59,8785),
(58,8161),
(57,10081),
(56,4899),
(55,1744),
(54,9916),
(53,8713),
(52,9529),
(51,8827),
(50,10255),
(49,6392),
(48,2253),
(47,9939),
(46,12083),
(45,12103),
(44,12667),
(43,19758),
(42,9699),
(41,5450),
(40,26566),
(39,41836),
(38,48441),
(37,49562),
(36,71987),
(35,32390),
(34,7159),
(33,179598),
(32,158675),
(31,132676),
(30,151839),
(29,139014),
(28,632065),
(27,7800),
(26,259440),
(25,215240),
(24,170986),
(23,157141),
(22,167304),
(21,20408),
(20,11949),
(19,267541),
(18,208096),
(17,174708),
(16,156445),
(15,153569),
(14,73937),
(13,73821),
(12,310246),
(11,231829),
(10,179047),
(9,145506),
(8,133433),
(7,108736),
(6,73381),
(5,84825),
(4,86641),
(3,86172),
(2,87690),
(1,148110),
(0,7960761),
(-1,861),
(-2,365),
(-3,356),
(-4,578),
(-5,293),
(-6,310),
(-7,414),
(-8,748),
(-9,113),
(-10,782),
(-11,705),
(-12,711),
(-13,915),
(-14,539),
(-15,70),
(-16,21),
(-17,40),
(-18,56),
(-19,52),
(-20,34),
(-21,46),
(-22,20),
(-23,10),
(-24,24),
(-25,44),
(-26,18),
(-27,13),
(-28,4),
(-29,3),
(-30,6),
(-31,2),
(-58,1),
(-59,13),
(-60,2),
(-61,2),
(-64,1),
(-70,1),
(-97,1),
(-145,1),
(-234,1),
(-239,2),
(-240,2),
(-272,2),
(-273,1),
(-274,1),
(-276,4),
(-1094,1),
(-1096,1),
(-1337,1),
(-1341,1),
(-3545,1),
(-3547,1),
(-10962,1),
(-10964,1),
(-255449,1),
(-255470,1),
(-365104,1),
(-365105,1)
DECLARE c CURSOR FOR
SELECT widgetSize, recordCount FROM #Data
OPEN c
DECLARE @widgetSize INT
DECLARE @rowCount INT
FETCH NEXT FROM c INTO @widgetSize, @rowCount
WHILE @@FETCH_STATUS = 0
BEGIN
;WITH cte AS
(
SELECT rowNumber = 1
UNION ALL
SELECT rowNumber + 1
FROM cte
WHERE rowNumber < @rowCount
)
INSERT INTO Test
(
widgetSize
)
SELECT
@widgetSize
FROM cte
OPTION (MAXRECURSION 0)
FETCH NEXT FROM c INTO @widgetSize, @rowCount
END
CLOSE c
DEALLOCATE c
DROP TABLE #Data
CREATE STATISTICS WidgetSize
ON Test (WidgetSize) WITH FULLSCAN
fonte
id
ewidgetsize
?(id, widgetSize)
? Se a ordem de pesquisa mudar doASC/DESC
índice for lida de volta para a frente - ela não se tornará obsoleta.CREATE CLUSTERED INDEX CIX_id_widgetSize ON Test (id, widgetSize)
13773285 rows < 100
e somente65717 rows > 100
, portanto, você está limitando amplamente as linhas consultadas com oWHERE
. Existe algum outro valor que você pode filtrar? Se você tem uma empresa, considere particionar a tabela.Respostas:
Não há solução mágica para esse tipo de problema. Para evitar uma classificação potencialmente cara, é necessário que haja um índice que possa fornecer a ordem solicitada (e o otimizador deve optar por usar esse índice). Sem um índice de suporte, o melhor que o SQL Server pode fazer de forma nativa é restringir as linhas qualificadas (com base na
WHERE
cláusula) antes de classificar o conjunto resultante. Sem umaWHERE
cláusula, isso significa classificar todas as linhas da tabela.As linhas 'top 739' nessa instrução presumivelmente se referem às primeiras entradas no histograma de estatísticas, ordenadas por
RANGE_HI_KEY
. O histograma é construído em um fluxo ordenado (usando uma classificação). Nenhuma informação é mantida sobre onde essas linhas estão na tabela. Mesmo que essas linhas sejam encontradas primeiro na varredura da tabela, o mecanismo não tem opção, mas conclui completamente a varredura para garantir que não encontre valores com classificação mais alta.Para encontrar as 30 maiores linhas, o SQL Server precisa verificar todas as linhas (que qualificam a
WHERE
cláusula). Não há como o SQL Server escolher um 'valor mínimo' arbitrário que seja qualificado como 'grande o suficiente' e, mesmo que o fizesse, não poderia localizar essas linhas sem o índice apropriado.De fato, Top N Sort, em que N <= 100, usa uma estratégia de substituição, na qual apenas os valores recebidos maiores que o mínimo atual são colocados no buffer de classificação, mas essa é uma otimização menor em comparação ao custo de leitura de linhas da tabela e passá-los para o tipo.
Em princípio, o mecanismo pode enviar um filtro dinâmico (no valor mínimo atual presente no buffer de classificação) para a varredura da tabela, para restringir as linhas o mais cedo possível, mas isso não é implementado. Para contornar isso, uma idéia semelhante envolve a criação de uma exibição indexada sobre os valores distintos
widgetSize
com o número de linhas correspondentes a cada valor:Essa exibição indexada será muito menor que um índice não clusterizado equivalente,
widgetSize
se houver relativamente poucos valores distintos (como é o caso dos dados de amostra). Essas informações podem ser usadas para avaliar em qual mínimowidgetSize
filtrar, enquanto ainda garante que serão encontradas pelo menos 30 linhas.Primeira página
Para a primeira página de 30 linhas, a implementação é assim:
Planos de execução:
Isso melhora significativamente o tempo de execução, com a maior parte do custo restante associado à varredura da tabela e ao filtro push-down. O desempenho pode ser aprimorado ainda mais criando um índice de armazenamento de colunas não clusterizado (SQL Server 2012 em diante):
No meu laptop, executar a verificação e o filtro no modo de lote no índice de armazenamento de colunas reduziu o tempo de execução de cerca de 300ms para apenas 20ms :
Próxima página
A última linha retornada pela consulta de primeira página possui
widgetSize = 2903
eid = 327
:A localização das próximas 30 linhas (página 2) requer apenas modificações simples da consulta anterior:
Isso produz os mesmos resultados que a extensão óbvia da consulta original:
A consulta usando a exibição indexada e o índice de armazenamento de colunas não clusterizado é concluída em 25ms , em comparação com mais de 2000ms para o original.
Solução de índice tradicional
Como alternativa, se você criar índices não clusterizados (mínimos, não abrangentes) para suportar as solicitações de pedidos mais comuns, as chances são muito boas de que o otimizador de consultas as use para satisfazer a
TOP (30)
consulta. A compactação de índice pode ser usada para minimizar o tamanho desses índices adicionais.fonte
Em seu lugar, eu daria um passo atrás e questionaria o requisito. Seu pino quadrado se encaixa apenas marginalmente no todo redondo.
Considere filtrar e pesquisar em vez de classificar e paginar. É melhor para o back-end e é melhor para o usuário. Ninguém está realmente interagindo com 10 linhas mil classificando por coluna Foo e navegar para a página 312. pesquisa Strong é um modo metáfora muito melhor UX.
Você pode perguntar como criar pesquisa e filtragem eficientes em critérios arbitrários no banco de dados (lojas de colunas), mas na maioria das vezes a implementação é simplesmente pesquisar de fora do banco de dados (Lucene, Sphinx etc.).
fonte