Alterar o algoritmo mínimo da caixa delimitadora

12

Estou tentando criar um algoritmo semelhante à caixa delimitadora mínima (embora possa acabar parecendo nada com isso). Nesse caso, o ângulo será passado como parâmetro e, devido ao ângulo, preciso do menor retângulo que cubra todos os meus pontos / polígonos. Até agora, minha linha de pensamento é encontrar o centro dos meus pontos (algoritmo centróide) e, a partir daí, criar duas linhas paralelas com o mesmo ângulo que o ângulo do parâmetro, e mais duas linhas perpendiculares a elas. Em seguida, usando a iteração, mova essas linhas para fora (em direções opostas) até que elas contenham todos os pontos. Também não precisa ser a caixa delimitadora mínima exata, trabalhos aproximados (acho que dependeriam do tamanho de cada etapa da iteração).

Aqui esta o meu codigo ate agora. Eu já dissolvi todos os meus polígonos em um. Depois, pego um casco convexo para reduzir os vértices. Em seguida, coloco todos os vértices em uma lista - não tenho certeza se isso ajuda ainda ...

a = layer.getFeatures()
for feat in a:
    geom = feat.geometry()
a = geom.convexHull()
vertexId = QgsVertexId()
vertices = []
b = a.constGet().nextVertex(vertexId)
while b[0]:
    vertices.append(b[1])
    b = a.constGet().nextVertex(vertexId)

Notas: Em algum momento, preciso passar o ângulo da caixa. Estou usando o QGIS 3 e preciso criar isso em Python. A camada 'layer' possui uma geometria, o polígono dissolvido de todos os outros polígonos - talvez a iteração não seja necessária para acessá-lo.

Informe-me se eu deveria passar mais detalhes / informações.

anthonyB
fonte
3
Esta é uma tarefa simples. Gire os vértices do casco convexo usando as equações padrão, stackoverflow.com/questions/20104611/… Calcular minX, minY etc. Faça uma nova rotação e crie um retângulo de 4 pares xy.
FelixIP # 7/18

Respostas:

2

Aqui está o código completo. Ele contém muitas linhas (muito mais do que o necessário, com certeza), mas funciona. Agora você pode limpá-lo, se quiser.

Em resumo, o algoritmo calcula a distância máxima entre as linhas paralelas que têm a inclinação definida pelo parâmetro de rotação e passam pelos pontos. Para cada ponto, será criada uma linha 'horizontal' e 'vertical'. Esses nomes são apenas orientativos, pois são definidos na posição 0 (rotação = 0). Assim, para cada ponto externo, serão criadas essas 2 linhas possíveis e, iterativamente, o polígono será criado com base nas 4 externas, ou dito de outra maneira, onde a distância das linhas paralelas é máxima.

Uma última coisa: é feito para ser usado no QGIS 3.8 com grama.

insira a descrição da imagem aqui

from PyQt5.QtCore import *
from qgis.core import *
from qgis.gui import *
from processing.tools import *
from qgis.utils import iface
import qgis.utils, os, glob, processing, string, time, shutil, ogr

#PARAMETERS AND LAYERS
rotation = 45 #use any value between 0 and <90 #90 would make a mess

layer1 = iface.activeLayer() # Load the layer (from active)
crs = layer1.crs().authid() #get crs

#----------------------------------------------------------------------------------------
#LINE EQUATIONS
''' 
BASIC LINE EQUATIONS
y = ax + b
a = (y2 - y1) / (x2 - x1)
b = y1 - a * x1
Distance = (| a*x1 + b*y1 + c |) / (sqrt( a*a + b*b))# Function to find straight distance betweeen line and point 
'''
# slope from angle
def sfa (a):
    return round(math.tan(math.radians(a)),12) #round to avoid problems with horizontal and vertical

# angle from slope (not used)
def afs (s):
    return (math.atan(s) / math.pi) * 180

# Function to find distance 
def shortest_distance(x1, y1, a, b, c):    
    d = round(abs((a * x1 + b * y1 + c)) / (math.sqrt(a * a + b * b)) , 12)
    return d

# Function to find interception between lines
def cross(a1,b1,a2,b2):
    x = (b2-b1) / (a1-a2)
    y = a1 * x + b1
    return (x,y)

#----------------------------------------------------------------------------------------
# GET LIST OF POINTS TO ITERATE
# Calculate convexhull to reduce the iterations between point
# This avoid calculations on 'internal' points
# process of minimum bounding geometry convexHull
MBG = processing.run("qgis:minimumboundinggeometry", {'INPUT': layer1,'FIELD':None,'TYPE':3,'OUTPUT':'TEMPORARY_OUTPUT'})

# Get vertex of MBG
MBGp = processing.run("native:extractvertices", {'INPUT':MBG['OUTPUT'],'OUTPUT':'TEMPORARY_OUTPUT'})

plist = list(MBGp['OUTPUT'].getFeatures())

lp = list()
for p in plist:
    geom = p.geometry()
    a = geom.asPoint()
    point = (a[0],a[1])
    lp.append(point)

#----------------------------------------------------------------------------------------
# PROCESS
# compare hdist and v dist betweeen each pair of point and get the most distant lines
hdist_max = 0
vdist_max = 0
index = list(range(0,len(lp))) #iteration index
bl = ['ah1','bh1','av1','bv1','ah2','bh2','av2','bv2'] #polygon lines defined by 8 parameters see below

for i in index[:-1]:
    print('i'+str(i))
    for t in index[i+1:]:
        print('t'+str(t))

        x1 = lp[i][0] #; print('x1: {}', x1)
        y1 = lp[i][1] #; print('y1: {}', y1)
        x2 = lp[t][0] #; print('x2: {}', x2)
        y2 = lp[t][1] #; print('y2: {}', y2)

        #h1 equation
        ah1 = sfa(rotation)
        bh1 = y1 - ah1 * x1

        #v1 equation
        av1 = sfa(rotation + 90) #remember that just the horizontal is the reference at 0 rotation
        bv1 = y1 - av1 * x1 

        #h2 equation
        ah2 = sfa(rotation)
        bh2 = y2 - ah2 * x2

        #v2 equation
        av2 = sfa(rotation + 90) #remember that just the horizontal is the reference
        bv2 = y2 - av2 * x2 

        # H dist
        hdist = shortest_distance(x1, y1, ah2, -1, bh2)
        vdist = shortest_distance(x1, y1, av2, -1, bv2)

        if hdist > hdist_max:
            bl[0] = ah1
            bl[1] = bh1
            bl[4] = ah2
            bl[5] = bh2
            hdist_max = hdist #update max hdist
        if vdist > vdist_max:
            bl[2] = av1
            bl[3] = bv1
            bl[6] = av2
            bl[7] = bv2
            vdist_max = vdist #update max vdist

print("Max perpendicular distance betweeen 'horizontal lines' is",hdist_max, ' m')
print("Max perpendicular distance betweeen 'verticallines' is",vdist_max, ' m')

#------------------------------------------------------------------------------------------
# GET 4 COORDS FROM BOUNDINGLINES bl
# using the slope and intercept from boundinglines can we now calculate the 4 corners of the rotated polygon
H1V1 = cross(bl[0],bl[1],bl[2],bl[3]) # H1V1
H1V2 = cross(bl[0],bl[1],bl[6],bl[7]) # H1V2
H2V1 = cross(bl[4],bl[5],bl[2],bl[3]) # H2V1
H2V2 = cross(bl[4],bl[5],bl[6],bl[7]) # H2V2

# SORT POINTS CLOCKWISE AND CREATE QgsPointXY for polygon
clist = [H1V1,H1V2,H2V1,H2V2]
points=[]
points.append(sorted(clist, key=lambda e: (e[1], e[0]))[0]); clist.remove(points[0]) #minX and minY
points.append(sorted(clist, key=lambda e: (e[0], e[1]))[0]); clist.remove(points[1]) #minY and minX
points.append(sorted(clist, key=lambda e: (e[1]), reverse=True)[0]); clist.remove(points[2]) #maxY
points.append(clist[0]) #remaining
p=[]
for i in points:
    p.append(QgsPointXY(i[0],i[1]))
print('Coords of the polygon: ',p)

#------------------------------------------------------------------------------------------
#CREATE ROTATED BOUNDING BOX FROM THESE POINTS
layer = QgsVectorLayer(str('Polygon?crs='+crs), 'polygon' , 'memory')
prov = layer.dataProvider()
feat = QgsFeature()
feat.setGeometry(QgsGeometry.fromPolygonXY([p]))
prov.addFeatures([feat])
layer.updateExtents()
QgsProject.instance().addMapLayers([layer])
César Arquero
fonte