Como posso transformar entre os dois estilos de formato de chave pública, um “BEGIN RSA PUBLIC KEY”, o outro é “BEGIN PUBLIC KEY”

92

Como posso transformar os dois estilos de formato de chave pública, um formato é:

-----BEGIN PUBLIC KEY-----
...
-----END PUBLIC KEY-----

o outro formato é:

-----BEGIN RSA PUBLIC KEY-----
...
-----END RSA PUBLIC KEY-----

por exemplo, gerei o par id_rsa / id_rsa.pub usando o comando ssh-keygen, calculei a chave pública de id_rsa usando:

openssl rsa -in id_rsa -pubout -out pub2 

em seguida, calculei novamente a chave pública de id_rsa.pub usando:

ssh-keygen -f id_rsa.pub -e -m pem > pub1

o conteúdo é pub1 é:

-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----

e o conteúdo do pub2 é:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB
-----END PUBLIC KEY-----

De acordo com meu entendimento, pub1 e pub2 contêm as mesmas informações de chave pública, mas eles estão em formatos diferentes. Eu me pergunto como posso transformar entre os dois formatos? Alguém pode me mostrar uma introdução concisa sobre os formatos de reboque?

Welkinwalker
fonte
Stack Overflow é um site para questões de programação e desenvolvimento. Esta questão parece estar fora do tópico porque não é sobre programação ou desenvolvimento. Veja sobre quais tópicos posso perguntar aqui na Central de Ajuda. Talvez Superusuário ou Unix e Linux Stack Exchange sejam um lugar melhor para perguntar.
jww

Respostas:

11

Usando phpseclib, uma implementação PHP RSA pura ...

<?php
include('Crypt/RSA.php');

$rsa = new Crypt_RSA();
$rsa->loadKey('-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB
-----END PUBLIC KEY-----');
$rsa->setPublicKey();

echo $rsa->getPublicKey(CRYPT_RSA_PUBLIC_FORMAT_PKCS1_RAW);

O material codificado em base64 parece corresponder, embora o cabeçalho diga BEGIN PUBLIC KEY e não BEGIN RSA PUBLIC KEY. Então talvez use str_replace para consertar isso e você estará pronto para começar!


fonte
304

Eu queria ajudar a explicar o que está acontecendo aqui.

Uma "chave pública" RSA consiste em dois números:

  • o módulo (por exemplo, um número de 2.048 bits)
  • o expoente (geralmente 65.537)

Usando sua chave pública RSA como exemplo, os dois números são:

  • Módulo : 297.056.429.939.040.947.991.047.334.197.581.225.628.107.021.573.849.359.042.679.698.093.131.908, 015.712.695.688.944.173.317.630.555.849.768.647.118.986.535.684.992.647.654.339.728.777.985.990.170, 679.511.111.819.558.063.246.667.855.023.730.127.805.401.069.042.322.764.200.545.883.378.826.983.730, 553.730.138.478.384.327.116.513.143.842.816.383.440.639.376.515.039.682.874.046.227.217.032.079.079.790.098.143.158.087.443.017.552.531.393.264.852.461.292.775.129.262.080.851.633.535.934.010.704.122.673.027.067.442.627.059.982.393.297.716.922.243.940.155.855.127.430.302.323.883.824.137.412.883.916.794.359.982.603.439.112.095.116.831.297.809.626.059.569.444.750.808.699.678.211.904.501.083.183.234.323.797.142.810.155.862.553.705.570.600.021.649.944.369.726.123.996.534.870.137.000.784.980.673.984.909.570.977.377.882.585.701
  • Expoente : 65.537

A questão então é como queremos armazenar esses números em um computador. Primeiro, convertemos ambos em hexadecimal:

  • Modulus : EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
  • Expoente : 010001

RSA inventou o primeiro formato

RSA inventou um formato primeiro:

RSAPublicKey ::= SEQUENCE {
    modulus           INTEGER,  -- n
    publicExponent    INTEGER   -- e
}

Eles escolheram usar o tipo DER do padrão de codificação binária ASN.1 para representar os dois números [1] :

SEQUENCE (2 elements)
   INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
   INTEGER (24 bit): 010001

A codificação binária final em ASN.1 é:

30 82 01 0A      ;sequence (0x10A bytes long)
   02 82 01 01   ;integer (0x101 bytes long)
      00 EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
   02 03         ;integer (3 bytes long)
      010001

Se você executar todos esses bytes juntos e codificá-los em Base64, obterá:

MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB

Os laboratórios RSA disseram então para adicionar um cabeçalho e um trailer:

-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----

Cinco hífens e as palavras BEGIN RSA PUBLIC KEY. Esta é a sua chave pública PEM DER ASN.1 PKCS # 1 RSA

  • PEM: sinônimo de base64
  • DER: um tipo de codificação ASN.1
  • ASN.1: o esquema de codificação binária usado
  • PKCS # 1: A especificação formal que determina a representação de uma chave pública como uma estrutura que consiste em um módulo seguido por um expoente
  • Chave pública RSA: o algoritmo de chave pública sendo usado

Não apenas RSA

Depois disso, outras formas de criptografia de chave pública surgiram:

  • Diffie-Hellman
  • Curva Elíptica

Quando chegou a hora de criar um padrão de como representar os parâmetros desses algoritmos de criptografia, as pessoas adotaram muitas das mesmas ideias que a RSA definiu originalmente:

  • usar codificação binária ASN.1
  • base64 isso
  • envolva com cinco hífens
  • e as palavras BEGIN PUBLIC KEY

Mas em vez de usar:

  • -----BEGIN RSA PUBLIC KEY-----
  • -----BEGIN DH PUBLIC KEY-----
  • -----BEGIN EC PUBLIC KEY-----

Em vez disso, eles decidiram incluir o Identificador de Objeto (OID) do que está por vir. No caso de uma chave pública RSA, isto é:

  • RSA PKCS # 1 :1.2.840.113549.1.1.1

Portanto, para a chave pública RSA era essencialmente:

public struct RSAPublicKey {
   INTEGER modulus,
   INTEGER publicExponent 
}

Agora eles criaram SubjectPublicKeyInfo que é basicamente:

public struct SubjectPublicKeyInfo {
   AlgorithmIdentifier algorithm,
   RSAPublicKey subjectPublicKey
}

Na definição DER ASN.1 real é:

SubjectPublicKeyInfo  ::=  SEQUENCE  {
    algorithm  ::=  SEQUENCE  {
        algorithm               OBJECT IDENTIFIER, -- 1.2.840.113549.1.1.1 rsaEncryption (PKCS#1 1)
        parameters              ANY DEFINED BY algorithm OPTIONAL  },
    subjectPublicKey     BIT STRING {
        RSAPublicKey ::= SEQUENCE {
            modulus            INTEGER,    -- n
            publicExponent     INTEGER     -- e
        }
}

Isso dá a você um ASN.1 de:

SEQUENCE (2 elements)
   SEQUENCE (2 elements)
      OBJECT IDENTIFIER 1.2.840.113549.1.1.1
      NULL
   BIT STRING (1 element)
      SEQUENCE (2 elements)
         INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
         INTEGER (24 bit): 010001

A codificação binária final em ASN.1 é:

30 82 01 22          ;SEQUENCE (0x122 bytes = 290 bytes)
|  30 0D             ;SEQUENCE (0x0d bytes = 13 bytes) 
|  |  06 09          ;OBJECT IDENTIFIER (0x09 = 9 bytes)
|  |  2A 86 48 86   
|  |  F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
|  |  05 00          ;NULL (0 bytes)
|  03 82 01 0F 00    ;BIT STRING  (0x10f = 271 bytes)
|  |  30 82 01 0A       ;SEQUENCE (0x10a = 266 bytes)
|  |  |  02 82 01 01    ;INTEGER  (0x101 = 257 bytes)
|  |  |  |  00             ;leading zero of INTEGER
|  |  |  |  EB 50 63 99 F5 C6 12 F5  A6 7A 09 C1 19 2B 92 FA 
|  |  |  |  B5 3D B2 85 20 D8 59 CE  0E F6 B7 D8 3D 40 AA 1C 
|  |  |  |  1D CE 2C 07 20 D1 5A 0F  53 15 95 CA D8 1B A5 D1 
|  |  |  |  29 F9 1C C6 76 97 19 F1  43 58 72 C4 BC D0 52 11 
|  |  |  |  50 A0 26 3B 47 00 66 48  9B 91 8B FC A0 3C E8 A0
|  |  |  |  E9 FC 2C 03 14 C4 B0 96  EA 30 71 7C 03 C2 8C A2  
|  |  |  |  9E 67 8E 63 D7 8A CA 1E  9A 63 BD B1 26 1E E7 A0  
|  |  |  |  B0 41 AB 53 74 6D 68 B5  7B 68 BE F3 7B 71 38 28
|  |  |  |  38 C9 5D A8 55 78 41 A3  CA 58 10 9F 0B 4F 77 A5
|  |  |  |  E9 29 B1 A2 5D C2 D6 81  4C 55 DC 0F 81 CD 2F 4E 
|  |  |  |  5D B9 5E E7 0C 70 6F C0  2C 4F CA 35 8E A9 A8 2D 
|  |  |  |  80 43 A4 76 11 19 55 80  F8 94 58 E3 DA B5 59 2D
|  |  |  |  EF E0 6C DE 1E 51 6A 6C  61 ED 78 C1 39 77 AE 96 
|  |  |  |  60 A9 19 2C A7 5C D7 29  67 FD 3A FA FA 1F 1A 2F 
|  |  |  |  F6 32 5A 50 64 D8 47 02  8F 1E 6B 23 29 E8 57 2F 
|  |  |  |  36 E7 08 A5 49 DD A3 55  FC 74 A3 2F DD 8D BA 65
|  |  |  02 03          ;INTEGER (03 = 3 bytes)
|  |  |  |  010001

E como antes, você pega todos esses bytes, codifica-os em Base64 e acaba com seu segundo exemplo:

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB   

Adicione o cabeçalho e o trailer ligeiramente diferentes e você terá:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB   
-----END PUBLIC KEY-----

E esta é sua chave pública X.509 SubjectPublicKeyInfo / OpenSSL PEM [2] .

Faça certo ou hackear

Agora que você sabe que a codificação não é mágica, pode escrever todas as partes necessárias para analisar o módulo RSA e o expoente. Ou você pode reconhecer que os primeiros 24 bytes são apenas novos itens adicionados ao padrão PKCS # 1 original

30 82 01 22          ;SEQUENCE (0x122 bytes = 290 bytes)
|  30 0D             ;SEQUENCE (0x0d bytes = 13 bytes) 
|  |  06 09          ;OBJECT IDENTIFIER (0x09 = 9 bytes)
|  |  2A 86 48 86   
|  |  F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
|  |  05 00          ;NULL (0 bytes)
|  03 82 01 0F 00    ;BIT STRING  (0x10f = 271 bytes)
|  |  ...

Esses primeiros 24 bytes são coisas "novas" adicionadas:

30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00

E devido a uma extraordinária coincidência de fortuna e boa sorte:

24 bytes correspondem exatamente a 32 caracteres codificados em base64

Porque em Base64: 3 bytes se transformam em quatro caracteres:

30 82 01  22 30 0D  06 09 2A  86 48 86  F7 0D 01  01 01 05  00 03 82  01 0F 00
\______/  \______/  \______/  \______/  \______/  \______/  \______/  \______/
    |         |         |         |         |         |         |         |
  MIIB      IjAN      Bgkq      hkiG      9w0B      AQEF      AAOC      AQ8A

Isso significa que se você pegar sua segunda chave pública X.509, os primeiros 32 caracteres corresponderão apenas às coisas recém-adicionadas:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END PUBLIC KEY-----

Se você remover os primeiros 32 caracteres e alterá-los para BEGIN RSA PUBLIC KEY :

-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----

Você tem exatamente o que queria - o RSA PUBLIC KEYformato antigo .

Ian Boyd
fonte
27
Bolas, isso foi informativo! obrigado. Isso resolveu meu problema com um cara python que esperava apenas BEGIN RSA PUBLIC KEY. Porém, em seu último exemplo, parece que você se esqueceu de remover os 32 caracteres.
NullVoxPopuli
Que ferramenta você usou para imprimir a estrutura hexadecimal dos arquivos?
Buge
7
@Buge Eu usei o excelente decodificador ASN.1 JavaScript . Isso e o TRANSLATOR, BINARY são duas ferramentas excelentes para ter em sua caixa de ferramentas de truques.
Ian Boyd
1
O início do módulo tem um caractere "1" extra. Deve começar assim ... 297.056.429.939.040.947.991.047.334.197.581.225.628.107,02.573 ... mas NÃO assim ... 297.056.429.939.040.947.991.047.334.197.581.225.628.107.021.573 ... espero que ajude alguém a não ficar com raiva de sua conversão hexadecimal.
EmpathicSage
1
Versão jsFiddle do ASN.1 js . Também está no github
Ian Boyd,
51

Achei este site uma boa explicação técnica dos diferentes formatos: https://polarssl.org/kb/cryptography/asn1-key-structures-in-der-and-pem

"BEGIN RSA PUBLIC KEY" é PKCS # 1, que só pode conter chaves RSA.

"BEGIN PUBLIC KEY" é PKCS # 8, que pode conter uma variedade de formatos.

Se você deseja apenas convertê-los com a linha de comando, "openssl rsa" é bom para isso.

Para converter de PKCS # 8 para PKCS # 1:

openssl rsa -pubin -in <filename> -RSAPublicKey_out

Para converter de PKCS # 1 para PKCS # 8:

openssl rsa -RSAPublicKey_in -in <filename> -pubout
Esme Povirk
fonte
2
Não consigo encontrar nada sobre a chave pública no PKCS # 8 ( RFC 5208 ).
Franklin Yu
Não funciona em MacOS:unknown option -RSAPublicKey_in
nakajuice
2
@FranklinYu: sim PKCS8 é apenas uma chave privada e polarssl está errado nesse ponto. A forma genérica de publickey é definida por X.509 e especificamente pelo tipo SubjectPublicKeyInfo, conforme declarado corretamente na resposta (longa!) De Ian Boyd; esta informação é (mais convenientemente) duplicada no RFC5280 mais outros RFCs dependendo do algoritmo, com RSA 'básico' no RFC3279.
dave_thompson_085
@nakajuice: Você precisa do OpenSSL versão 1.0.0 (lançado em 2010) ou superior. AIUI Apple parou de suportar OpenSSL no OS (X), então você pode precisar de uma versão da brew ou similar.
dave_thompson_085
Isso me colocou na direção certa para converter do formato OpenSSH. Acabei usando ssh-keygen assim: ssh-keygen -i -f ~ / .ssh / id_rsa.pub -e -m PKCS8> ~ / .ssh / id_rsa.pub.pem
Bradley Kreider
13

Embora os comentários acima sobre cabeçalhos de 32 bytes, formatos OID e outros sejam interessantes, eu pessoalmente não vejo o mesmo comportamento, presumindo que estou entendendo. Achei que poderia ser útil explorar isso mais a fundo no que a maioria pode considerar um excesso de detalhes. Nada excede como o excesso.

Para começar, criei uma chave privada RSA e verifiquei:

>openssl rsa -in newclient_privatekey.pem  -check
RSA key ok
writing RSA key
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQCn/OlFk7vLRQ6dBiNQkvjnhm4pOYWo+GeAEmU4N1HPZj1dxv70
4hm80eYc7h12xc7oVcDLBdHByGAGBpQfpjgdPyozC/zSqcuU6iBrvzDTpyG1zhIG
76KrcjdbX6PlKAPO9r/dCRmUijFhVoUlY6ywGknmLBrtZkLkBhchgYnMswIDAQAB
AoGAQaJ5aivspeEXcpahWavzAFLv27+Tz48usUV+stY6arRhqbBEkV19/N5t8EPA
01U6IGDQ8QIXEIW/rtsHKM6DAZhAbakPDJhJRatcMzJ08ryIkP/c3+onkTquiveG
brw7xzn6Xa8ls04aQ6VQR4jxXUjV5bB72pFZnGRoAmS2NiECQQDUoISbmTGjnHM+
kEfunNTXbNmKklwTYhyZaSVsSptnD7CvLWB4qB/g4h2/HjsELag6Z7SlWuYr7tba
H3nBYn35AkEAykFRudMqlBy3XmcGIpjxOD+7huyViPoUpy3ui/Bj3GbqsbEAt9cR
PyOJa1VFa2JqShta1Tdep8LJv1QvgvY7CwJBAML+al5gAXvwEGhB3RXg0fi2JFLG
opZMFbpDCUTkrtu3MeuVC7HbTVDpTSpmSO0uCed2D97NG+USZgsnbnuBHdECQQCw
S3FWPXdetQ0srzaMz61rLzphaDULuZhpBMNqnTYeNmMaUcPjewagd3Rf52rkKFun
juKE+Yd7SXGbYWEskT5zAkAD7tbNwe5ryD2CT71jrY/5uXMR2yg/A4Ry2ocZkQUp
iGflLrHnODvHO5LYLBlSKpjanBceYHJLuMFNZruf7uBM
-----END RSA PRIVATE KEY-----

(Oh, horrores! Eu expus uma chave privada. Meh ...)

Extraio e exibo sua chave pública:

>openssl rsa -in newclient_privatekey.pem -pubout
writing RSA key
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCn/OlFk7vLRQ6dBiNQkvjnhm4p
OYWo+GeAEmU4N1HPZj1dxv704hm80eYc7h12xc7oVcDLBdHByGAGBpQfpjgdPyoz
C/zSqcuU6iBrvzDTpyG1zhIG76KrcjdbX6PlKAPO9r/dCRmUijFhVoUlY6ywGknm
LBrtZkLkBhchgYnMswIDAQAB
-----END PUBLIC KEY-----

Acontece que há outro parâmetro de saída de chave pública (conforme mencionado em um comentário anterior). Eu extraio e exibo a chave pública usando essa palavra-chave:

>openssl rsa -in newclient_privatekey.pem -RSAPublicKey_out
writing RSA key
-----BEGIN RSA PUBLIC KEY-----
MIGJAoGBAKf86UWTu8tFDp0GI1CS+OeGbik5haj4Z4ASZTg3Uc9mPV3G/vTiGbzR
5hzuHXbFzuhVwMsF0cHIYAYGlB+mOB0/KjML/NKpy5TqIGu/MNOnIbXOEgbvoqty
N1tfo+UoA872v90JGZSKMWFWhSVjrLAaSeYsGu1mQuQGFyGBicyzAgMBAAE=
-----END RSA PUBLIC KEY-----

Bem bem. Esses dois valores de chave pública não são iguais, embora sejam derivados da mesma chave privada. Ou eles são a mesma coisa? Eu recorto e colo as duas strings de chave pública em seus próprios arquivos e, em seguida, faço uma verificação de módulo em cada uma:

>openssl rsa -in newclient_publickey.pem -pubin -modulus
Modulus=
A7FCE94593BBCB450E9D06235092F8E7
866E293985A8F867801265383751CF66
3D5DC6FEF4E219BCD1E61CEE1D76C5CE
E855C0CB05D1C1C8600606941FA6381D
3F2A330BFCD2A9CB94EA206BBF30D3A7
21B5CE1206EFA2AB72375B5FA3E52803
CEF6BFDD0919948A316156852563ACB0
1A49E62C1AED6642E40617218189CCB3
writing RSA key
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCn/OlFk7vLRQ6dBiNQkvjnhm4p
OYWo+GeAEmU4N1HPZj1dxv704hm80eYc7h12xc7oVcDLBdHByGAGBpQfpjgdPyoz
C/zSqcuU6iBrvzDTpyG1zhIG76KrcjdbX6PlKAPO9r/dCRmUijFhVoUlY6ywGknm
LBrtZkLkBhchgYnMswIDAQAB
-----END PUBLIC KEY-----

O 'pubin' diz ao rsa que esta é realmente uma chave pública e não reclame que não é uma chave privada.

Agora pegamos a chave pública RSA, exibimos o módulo e a transformamos em uma "chave pública" simples e antiga (novamente, temos que dizer que a entrada é uma chave pública):

>openssl rsa -in newclient_rsapublickey.pem -RSAPublicKey_in -modulus
Modulus=
A7FCE94593BBCB450E9D06235092F8E7
866E293985A8F867801265383751CF66
3D5DC6FEF4E219BCD1E61CEE1D76C5CE
E855C0CB05D1C1C8600606941FA6381D
3F2A330BFCD2A9CB94EA206BBF30D3A7
21B5CE1206EFA2AB72375B5FA3E52803
CEF6BFDD0919948A316156852563ACB0
1A49E62C1AED6642E40617218189CCB3
writing RSA key
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCn/OlFk7vLRQ6dBiNQkvjnhm4p
OYWo+GeAEmU4N1HPZj1dxv704hm80eYc7h12xc7oVcDLBdHByGAGBpQfpjgdPyoz
C/zSqcuU6iBrvzDTpyG1zhIG76KrcjdbX6PlKAPO9r/dCRmUijFhVoUlY6ywGknm
LBrtZkLkBhchgYnMswIDAQAB
-----END PUBLIC KEY-----

Mesmo módulo e mesmo valor de 'chave pública' exibido. Para tornar as coisas mais interessantes (para mim, pelo menos), quando adicionamos a palavra-chave RSAPublicKey_out obtemos:

>openssl rsa -in newclient_rsapublickey.pem -RSAPublicKey_in -modulus -RSAPublicKey_out
Modulus=
A7FCE94593BBCB450E9D06235092F8E7
866E293985A8F867801265383751CF66
3D5DC6FEF4E219BCD1E61CEE1D76C5CE
E855C0CB05D1C1C8600606941FA6381D
3F2A330BFCD2A9CB94EA206BBF30D3A7
21B5CE1206EFA2AB72375B5FA3E52803
CEF6BFDD0919948A316156852563ACB0
1A49E62C1AED6642E40617218189CCB3
writing RSA key
-----BEGIN RSA PUBLIC KEY-----
MIGJAoGBAKf86UWTu8tFDp0GI1CS+OeGbik5haj4Z4ASZTg3Uc9mPV3G/vTiGbzR
5hzuHXbFzuhVwMsF0cHIYAYGlB+mOB0/KjML/NKpy5TqIGu/MNOnIbXOEgbvoqty
N1tfo+UoA872v90JGZSKMWFWhSVjrLAaSeYsGu1mQuQGFyGBicyzAgMBAAE=
-----END RSA PUBLIC KEY-----

... e quando transformamos a velha "chave pública" em uma chave pública RSA:

>openssl rsa -in newclient_publickey.pem -pubin -RSAPublicKey_out
writing RSA key
-----BEGIN RSA PUBLIC KEY-----
MIGJAoGBAKf86UWTu8tFDp0GI1CS+OeGbik5haj4Z4ASZTg3Uc9mPV3G/vTiGbzR
5hzuHXbFzuhVwMsF0cHIYAYGlB+mOB0/KjML/NKpy5TqIGu/MNOnIbXOEgbvoqty
N1tfo+UoA872v90JGZSKMWFWhSVjrLAaSeYsGu1mQuQGFyGBicyzAgMBAAE=
-----END RSA PUBLIC KEY-----

... marchando implacavelmente, e embora tenhamos feito isso alguns comandos atrás, para esclarecer que invertemos as coisas para que a transmogrificação seja de RSA para a velha 'chave pública':

>openssl rsa -in newclient_rsapublickey.pem -RSAPublicKey_in -pubout
writing RSA key
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCn/OlFk7vLRQ6dBiNQkvjnhm4p
OYWo+GeAEmU4N1HPZj1dxv704hm80eYc7h12xc7oVcDLBdHByGAGBpQfpjgdPyoz
C/zSqcuU6iBrvzDTpyG1zhIG76KrcjdbX6PlKAPO9r/dCRmUijFhVoUlY6ywGknm
LBrtZkLkBhchgYnMswIDAQAB
-----END PUBLIC KEY-----

... o que nos leva de volta ao ponto de partida. O que aprendemos?

Resumo: as chaves internamente são as mesmas, apenas parecem diferentes. Um comentário anterior apontou que o formato da chave RSA foi definido no PKCS # 1, e o antigo formato de 'chave pública' foi definido no PKCS # 8. No entanto, editar um formulário não o transforma no outro. Espero que eu já tenha vencido essa distinção até a morte.

No caso de ainda haver uma centelha de vida restante, no entanto, vamos bater um pouco mais e consultar o certificado que foi gerado originalmente com a chave privada RSA há muito tempo, examinando sua chave pública e módulo:

>openssl x509 -in newclient_cert.pem -pubkey -noout -modulus
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCn/OlFk7vLRQ6dBiNQkvjnhm4p
OYWo+GeAEmU4N1HPZj1dxv704hm80eYc7h12xc7oVcDLBdHByGAGBpQfpjgdPyoz
C/zSqcuU6iBrvzDTpyG1zhIG76KrcjdbX6PlKAPO9r/dCRmUijFhVoUlY6ywGknm
LBrtZkLkBhchgYnMswIDAQAB
-----END PUBLIC KEY-----
Modulus=
A7FCE94593BBCB450E9D06235092F8E7
866E293985A8F867801265383751CF66
3D5DC6FEF4E219BCD1E61CEE1D76C5CE
E855C0CB05D1C1C8600606941FA6381D
3F2A330BFCD2A9CB94EA206BBF30D3A7
21B5CE1206EFA2AB72375B5FA3E52803
CEF6BFDD0919948A316156852563ACB0
1A49E62C1AED6642E40617218189CCB3

... e todos viveram felizes para sempre: o certificado tem o mesmo valor de módulo que a chave pública RSA, a chave privada RSA e a velha 'chave pública'. O certificado contém o mesmo valor de 'chave pública' simples e antigo que vimos anteriormente, embora tenha sido assinado com um arquivo marcado como uma chave privada RSA. É seguro dizer que há um consenso.

Não há palavra-chave equivalente 'RSAPublicKey_out' no quadrante X509 da galáxia OpenSSL, então não podemos tentar isso, embora o valor do módulo seja descrito como o "módulo da chave RSA" que suponho ser o mais próximo que conseguiremos.

Como isso ficaria com um certificado assinado por DSA, eu não sei.

Sei que isso não responde à pergunta original, mas talvez forneça algumas informações úteis. Se não, minhas desculpas. No mínimo, coisas a não fazer e suposições a não fazer.

Sem dúvida, notou-se a repetição um pouco irritante de "escrever chave RSA", quando não está fazendo nada disso. Suponho que o que isso significa é que o módulo rsa reconhece a chave pública antiga como uma chave RSA verdadeira e é por isso que ele fica repetindo "chave RSA" (além disso, é o módulo rsa, afinal). Se bem me lembro, a estrutura EVP_PKEY genérica tem uma união para todos os tipos de chave, com cada tipo de chave tendo seu próprio conjunto especial de valores (o útil denominado g, w, q e outras consoantes).

Em conclusão, noto que houve uma reclamação sobre programação e desenvolvimento; agora, cada comando OpenSSL obviamente tem um código correspondente, e se alguém deseja explorar todas as maravilhas que é a programação OpenSSL hoje, a linha de comando parece um lugar razoável para começar. Neste caso específico (como estou usando um cygwin recente no momento), pode-se começar revisando \ openssl-1.0.2f \ apps \ rsa.c e (dado que um tem uma alta tolerância para macros) \ openssl-1.0. 2f \ crypto \ pem \ pem_all.c

Cotovia
fonte
8

A única diferença entre o seu pub1 e Pub2, além do cabeçalho / rodapé, é esta cadeia adicional em Pub2: MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A. Se você remover isso, a Base 64 é idêntica à do pub1.

A string extra corresponde ao identificador do algoritmo de acordo com esta Resposta .

gtrig
fonte