Maneira mais rápida de listar todos os números primos abaixo de N

357

Este é o melhor algoritmo que eu poderia criar.

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

Pode ser feito ainda mais rápido?

Este código tem uma falha: Como numbersé um conjunto não ordenado, não há garantia de que numbers.pop()o número mais baixo será removido do conjunto. No entanto, funciona (pelo menos para mim) para alguns números de entrada:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
jbochi
fonte
O sniplet de código em questão é muito mais rápido se os números declarados como números = definidos (intervalo (n, 2, -2)). Mas não pode bater sundaram3. Obrigado pela pergunta.
Shekhar
3
Seria bom se houvesse versões Python 3 das funções nas respostas.
Michael Foukarakis
Certamente há uma biblioteca para fazer isso, para que não tenhamos que lançar o nosso> xkcd, o Python prometido é tão simples quanto import antigravity. Não há nada como require 'prime'; Prime.take(10)(Ruby)?
Coronel Panic
2
@ColonelPanic Por acaso, atualizei o github.com/jaredks/pyprimesieve para Py3 e adicionei-o ao PyPi. É certamente mais rápido que esses, mas não de magnitude - mais parecido com ~ 5x mais rápido que as melhores versões numpy.
Jared
3
@ColonelPanic: Eu acho que editar respostas antigas para observar que elas envelhecem é apropriado, pois isso a torna um recurso mais útil. Se a resposta "aceita" não for mais a melhor, talvez edite uma nota na pergunta com uma atualização de 2015 para apontar as pessoas para o melhor método atual.
Peter Cordes

Respostas:

366

Aviso: os timeit resultados podem variar devido a diferenças de hardware ou versão do Python.

Abaixo está um script que compara várias implementações:

Muito obrigado a stephan por trazer sieve_wheel_30 à minha atenção. O crédito é para Robert William Hanks por primesfrom2to, primesfrom3to, rwh_primes, rwh_primes1 e rwh_primes2.

Dos métodos simples de Python testados, com psyco , para n = 1000000, rwh_primes1 foi o mais rápido testado.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes1         | 43.0  |
| sieveOfAtkin        | 46.4  |
| rwh_primes          | 57.4  |
| sieve_wheel_30      | 63.0  |
| rwh_primes2         | 67.8  |    
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain    | 152.0 |
| sundaram3           | 194.0 |
+---------------------+-------+

Dos métodos simples de Python testados, sem psyco , para n = 1000000, rwh_primes2 foi o mais rápido.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes2         | 68.1  |
| rwh_primes1         | 93.7  |
| rwh_primes          | 94.6  |
| sieve_wheel_30      | 97.4  |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain    | 286.0 |
| sieveOfAtkin        | 314.0 |
| sundaram3           | 416.0 |
+---------------------+-------+

De todos os métodos testados, permitindo numpy , para n = 1000000, o número primos de 2 a foi o mais rápido testado.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| primesfrom2to       | 15.9  |
| primesfrom3to       | 18.4  |
| ambi_sieve          | 29.3  |
+---------------------+-------+

Os tempos foram medidos usando o comando:

python -mtimeit -s"import primes" "primes.{method}(1000000)"

com {method}substituído por cada um dos nomes de métodos.

primes.py:

#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np

def rwh_primes(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
    return [2] + [i for i in xrange(3,n,2) if sieve[i]]

def rwh_primes1(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * (n/2)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
    return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]

def rwh_primes2(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n/3)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
        sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
    return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]

def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
    __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
    61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
    149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
    229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
    313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
    499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
    691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)

    wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1  = [True] * dim
    tk7  = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x*y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
    # inner functions definition
    def del_mult(tk, start, step):
        for k in xrange(start, len(tk), step):
            tk[k] = False
    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]: p.append(cpos + 1)
        if tk7[pos]: p.append(cpos + 7)
        if tk11[pos]: p.append(cpos + 11)
        if tk13[pos]: p.append(cpos + 13)
        if tk17[pos]: p.append(cpos + 17)
        if tk19[pos]: p.append(cpos + 19)
        if tk23[pos]: p.append(cpos + 23)
        if tk29[pos]: p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos+1:]
    # return p list
    return p

def sieveOfEratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <[email protected]>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = range(3, n, 2)
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si*si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]

def sieveOfAtkin(end):
    """sieveOfAtkin(end): return a list of all the prime numbers <end
    using the Sieve of Atkin."""
    # Code by Steve Krenzel, <[email protected]>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = ((end-1) // 2)
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
    for xd in xrange(4, 8*x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
    for xd in xrange(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not(n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
    for x in xrange(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
        for d in xrange(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[:max(0,end-2)]

    for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in xrange(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s  = int(sqrt(end)) + 1
    if s  % 2 == 0:
        s += 1
    primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])

    return primes

def ambi_sieve_plain(n):
    s = range(3, n, 2)
    for m in xrange(3, int(n**0.5)+1, 2): 
        if s[(m-3)/2]: 
            for t in xrange((m*m-3)/2,(n>>1)-1,m):
                s[t]=0
    return [2]+[t for t in s if t>0]

def sundaram3(max_n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

################################################################################
# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in xrange(3, int(n ** 0.5)+1, 2): 
        if s[(m-3)/2]: 
            s[(m*m-3)/2::m]=0
    return np.r_[2, s[s>0]]

def primesfrom3to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns a array of primes, p < n """
    assert n>=2
    sieve = np.ones(n/2, dtype=np.bool)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = False
    return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]    

def primesfrom2to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k] = False
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
    return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]

if __name__=='__main__':
    import itertools
    import sys

    def test(f1,f2,num):
        print('Testing {f1} and {f2} return same results'.format(
            f1=f1.func_name,
            f2=f2.func_name))
        if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
            sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))

    n=1000000
    test(sieveOfAtkin,sieveOfEratosthenes,n)
    test(sieveOfAtkin,ambi_sieve,n)
    test(sieveOfAtkin,ambi_sieve_plain,n) 
    test(sieveOfAtkin,sundaram3,n)
    test(sieveOfAtkin,sieve_wheel_30,n)
    test(sieveOfAtkin,primesfrom3to,n)
    test(sieveOfAtkin,primesfrom2to,n)
    test(sieveOfAtkin,rwh_primes,n)
    test(sieveOfAtkin,rwh_primes1,n)         
    test(sieveOfAtkin,rwh_primes2,n)

A execução dos testes de script que todas as implementações fornecem o mesmo resultado.

unutbu
fonte
4
Se você está interessado em código Python não puro, deve dar uma olhada gmpy- ele tem um bom suporte para números primos, através do next_primemétodo de seu mpztipo.
Alex Martelli
11
Se você estiver usando pypy, esses benchmarks (os psyco) parecem bastante errados. Surpreendentemente, achei sieveOfEratosthenes e ambi_sieve_plain os mais rápidos com pypy. Isto é o que eu encontrei para os não-numpy gist.github.com/5bf466bb1ee9e5726a52
Ehsan Kia
11
Se alguém se perguntar como as funções aqui se comportam no PG7.8 dos Wikilivros por python puro sem psyco nem pypy: para n = 1000000: PG7.8: 4.93 s por loop; rwh_primes1: 69 ms por loop; rwh_primes2: 57,1 ms por loop
gaborous
8
Você pode atualizar isso com o PyPy, agora que o psyco está morto e o PyPy o substituiu?
noɥʇʎԀʎzɐɹƆ
3
Seria ótimo se essas funções e horários pudessem ser atualizados para python3.
cs95
135

Código Python puro mais rápido e com mais memória:

def primes(n):
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
    return [2] + [i for i in range(3,n,2) if sieve[i]]

ou começando com meia peneira

def primes1(n):
    """ Returns  a list of primes < n """
    sieve = [True] * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
    return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]

Código numpy mais rápido e com mais memória:

import numpy
def primesfrom3to(n):
    """ Returns a array of primes, 3 <= p < n """
    sieve = numpy.ones(n//2, dtype=numpy.bool)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = False
    return 2*numpy.nonzero(sieve)[0][1::]+1

uma variação mais rápida começando com um terço de uma peneira:

import numpy
def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k//3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)//3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

Uma versão python pura (difícil de codificar) do código acima seria:

def primes2(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    n, correction = n-n%6+6, 2-(n%6>1)
    sieve = [True] * (n//3)
    for i in range(1,int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      k*k//3      ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
        sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

Infelizmente, o python puro não adota a maneira mais simples e rápida de realizar tarefas, e a chamada len()dentro do loop [False]*len(sieve[((k*k)//3)::2*k])é muito lenta. Então eu tive que improvisar para corrigir as entradas (e evitar mais matemática) e fazer alguma mágica matemática extrema (e dolorosa).

Pessoalmente, acho uma pena que o numpy (que é tão amplamente usado) não faça parte da biblioteca padrão do Python, e que as melhorias na sintaxe e na velocidade pareçam ser completamente ignoradas pelos desenvolvedores do Python.

Robert William Hanks
fonte
2
Agora, o Numpy é compatível com o Python 3. O fato de não estar na biblioteca padrão é bom, para que eles possam ter seu próprio ciclo de lançamento.
Adam
apenas armazenar valores binários em uma matriz i sugerir bitarray- como usado aqui (para o mais simples peneira prime; não um candidato na corrida aqui!) stackoverflow.com/questions/31120986/...
hiro protagonista
Ao primesfrom2to()transmitir o método, a divisão deve estar dentro dos colchetes?
355durch113
3
Para uma versão python puro compatível com python 3, siga este link: stackoverflow.com/a/33356284/2482582
Moebius
11
Caramba, esse otário é rápido.
Scott Scott
42

Há uma amostra bastante interessante do Python Cookbook aqui - a versão mais rápida proposta nesse URL é:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

então isso daria

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

Medindo no prompt do shell (como eu prefiro) com este código no pri.py, observei:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

parece que a solução Cookbook é duas vezes mais rápida.

Alex Martelli
fonte
11
@jbochi, de nada - mas veja esse URL, incluindo os créditos: foram necessários dez de nós para refinar coletivamente o código até esse ponto, incluindo luminárias de desempenho em Python como Tim Peters e Raymond Hettinger (escrevi o texto final da receita desde que editei o livro de receitas impresso, mas em termos de codificação minha contribuição foi comparável à dos outros) - no final, é um código realmente sutil e afinado, e isso não é surpreendente! -)
Alex Martelli
@ Alex: Saber que seu código é "apenas" duas vezes mais rápido que o meu, me deixa muito orgulhoso. :) O URL também foi muito interessante de ler. Obrigado novamente.
Jbochi
E isso pode ser feito ainda mais rápido com uma pequena alteração: consulte stackoverflow.com/questions/2211990/…
tzot
11
... E isso pode ser feito ainda mais rápido com aceleração adicional de ~ 1,2x-1,3x, redução drástica na área de memória de O (n) para O (sqrt (n)) e melhoria na complexidade do tempo empírico, adiando a adição de inicia o ditado até que seu quadrado seja visto na entrada. Teste aqui .
Will Ness
28

Usando a peneira de Sundaram , acho que quebrei o recorde do puro-Python:

def sundaram3(max_n):
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

Comparação:

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop
jbochi
fonte
11
Consegui acelerar sua função em cerca de 20% adicionando "zero = 0" na parte superior da função e substituindo o lambda no seu filtro por "zero .__ sub__". Não o código mais bonita do mundo, mas um pouco mais rápido :)
truppo
11
@ truppo: Obrigado pelo seu comentário! Acabei de perceber que a passagem em Nonevez da função original funciona e é ainda mais rápido do quezero.__sub__
jbochi
7
Você sabia que se você passar, sundaram3(9)ele retornará [2, 3, 5, 7, 9]? Parece fazer isso com numerosos - talvez todos - números ímpares (mesmo quando eles não são primos)
wrhall
11
ele tem um problema: sundaram3 (7071) inclui 7071 enquanto ele não é primo
bigOther
18

O algoritmo é rápido, mas tem uma falha séria:

>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529

Você supõe que numbers.pop()retornaria o menor número do conjunto, mas isso não é garantido. Os conjuntos são desordenados e pop()remove e retorna um elemento arbitrário ; portanto, não pode ser usado para selecionar o próximo primo dos números restantes.

sth
fonte
17

Para uma solução verdadeiramente mais rápida com N suficientemente grande, seria baixar uma lista pré-calculada de números primos , armazená-la como uma tupla e fazer algo como:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

Se N > primes[-1] apenas então calcular mais números primos e salvar a nova lista no seu código, da próxima vez será igualmente rápido.

Sempre pense fora da caixa.

Kimvais
fonte
9
Para ser justo, porém, você teria que contar o tempo para baixar, descompactar e formatar os números primos e compará-lo com o tempo para gerar números primos usando um algoritmo - qualquer um desses algoritmos poderia gravar facilmente os resultados em um arquivo para mais tarde usar. Penso que, nesse caso, se houver memória suficiente para calcular todos os números primos menores que 982.451.653, a solução numpy ainda seria mais rápida.
Daniel G
3
@ Daniel correto. No entanto, a loja que você tem e continuar sempre que necessário ainda está de pé ...
Kimvais
@Daniel GI acho que o tempo de download é irrelevante. Não se trata realmente de gerar números, então você deve considerar o algoritmo usado para criar a lista que está baixando. E qualquer complexidade de tempo ignoraria o momento da transferência de arquivo, dado O (n).
22414 Ross
O FAQ da página principal do UTM sugere que calcular pequenos números primos é mais rápido do que lê-los em um disco (a questão é o que significa pequeno).
Batman
12

Se você não deseja reinventar a roda, pode instalar a biblioteca simbólica de matemática sympy (sim, é compatível com Python 3)

pip install sympy

E use a função primerange

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))
Coronel Panic
fonte
8

Se você aceitar as ferramentas, mas não estiver entorpecido, aqui está uma adaptação do rwh_primes2 para Python 3 que roda duas vezes mais rápido na minha máquina. A única alteração substancial é usar uma matriz de bytes em vez de uma lista para o booleano e usar compressa em vez de uma compreensão da lista para criar a lista final. (Eu adicionaria isso como um comentário como moarningsun, se eu fosse capaz.)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

Comparações:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

e

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801
Jason
fonte
Implementação muito legal. :)
Krish
7

É instrutivo escrever seu próprio código de busca principal, mas também é útil ter uma biblioteca rápida e confiável à mão. Eu escrevi um wrapper em torno da biblioteca C ++ primesieve , denominada primesieve-python

Tente pip install primesieve

import primesieve
primes = primesieve.generate_primes(10**8)

Eu ficaria curioso para ver a velocidade comparada.

Coronel Panic
fonte
Não é exatamente o que o OP ordenou, mas não vejo por que o voto negativo. É uma solução de 2,8 segundos, diferente de outros módulos externos. Eu notei na fonte que ele está encadeado, tem algum teste de quão bem ele escala?
Ljetibo
@ljetibo cheers. O gargalo parece estar copiando o vetor C ++ para a lista Python, portanto, a count_primesfunção é muito mais rápida que o #generate_primes
Coronel Panic
No meu computador, ele pode gerar confortavelmente números primos de até 1e8 (fornece MemoryError para 1e9) e contar números primos de até 1e10. @HappyLeapSecond acima compara algoritmos para 1e6
Coronel Panic
7

Aqui estão duas versões atualizadas (pura Python 3.6) de uma das funções mais rápidas,

from itertools import compress

def rwh_primes1v1(n):
    """ Returns  a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

def rwh_primes1v2(n):
    """ Returns a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2+1)
    for i in range(1,int(n**0.5)//2+1):
        if sieve[i]:
            sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]
Bruno Astrolino
fonte
11
No Python 3, usei essa função stackoverflow.com/a/3035188/7799269, mas substituí / por // e xrange com range e eles pareciam muito mais rápidos que isso.
samerivertwice
4

Implementação determinística do teste de primazia de Miller-Rabin, pressupondo que N <9.080.191

import sys
import random

def miller_rabin_pass(a, n):
    d = n - 1
    s = 0
    while d % 2 == 0:
        d >>= 1
        s += 1

    a_to_power = pow(a, d, n)
    if a_to_power == 1:
        return True
    for i in xrange(s-1):
        if a_to_power == n - 1:
            return True
        a_to_power = (a_to_power * a_to_power) % n
    return a_to_power == n - 1


def miller_rabin(n):
    for a in [2, 3, 37, 73]:
      if not miller_rabin_pass(a, n):
        return False
    return True


n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
  if miller_rabin(p):
    primes.append(p)
print len(primes)

De acordo com o artigo da Wikipedia ( http://en.wikipedia.org/wiki/Miller–Rabin_primality_test ), testar N <9.080.191 para a = 2,3,37 e 73 é suficiente para decidir se N é composto ou não.

E adaptei o código fonte da implementação probabilística do teste original de Miller-Rabin encontrado aqui: http://en.literateprograms.org/Miller-Rabin_primality_test_(Python)

Ruggiero Spearman
fonte
11
Obrigado pelo teste de primalidade de Miller-Rabin, mas esse código é realmente mais lento e não está fornecendo os resultados corretos. 37 é primo e não passa no teste.
Jbochi
Eu acho que 37 é um dos casos especiais, meu mal. Eu estava esperançoso sobre a versão determinista embora :)
Ruggiero Spearman
Não há nenhum caso especial para o rabin miller.
Misguided
2
Você interpretou mal o artigo. É 31, não 37. É por isso que sua implementação falha.
Logan
4

Se você tem controle sobre N, a maneira mais rápida de listar todos os números primos é pré-calculá-los. A sério. A pré-computação é uma maneira negligenciada de otimização.

Dave W. Smith
fonte
3
Ou faça o download deles aqui , primes.utm.edu/lists/small/millions , mas a idéia é testar o limite do python e ver se um código bonito surge da otimização.
Jbochi
4

Aqui está o código que eu normalmente uso para gerar números primos em Python:

$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)' 
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt

def sieve(size):
 prime=[True]*size
 rng=xrange
 limit=int(sqrt(size))

 for i in rng(3,limit+1,+2):
  if prime[i]:
   prime[i*i::+i]=[False]*len(prime[i*i::+i])

 return [2]+[i for i in rng(3,size,+2) if prime[i]]

if __name__=='__main__':
 print sieve(100)

Ele não pode competir com as soluções mais rápidas postadas aqui, mas pelo menos é python puro.

Obrigado por postar esta questão. Eu realmente aprendi muito hoje.

MAK
fonte
3

Para o código mais rápido, a solução numpy é a melhor. Por razões puramente acadêmicas, porém, estou postando minha versão python pura, que é um pouco menos de 50% mais rápida que a versão do livro de receitas postada acima. Como eu faço a lista inteira na memória, você precisa de espaço suficiente para armazenar tudo, mas parece que está bem dimensionado.

def daniel_sieve_2(maxNumber):
    """
    Given a number, returns all numbers less than or equal to
    that number which are prime.
    """
    allNumbers = range(3, maxNumber+1, 2)
    for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
        if allNumbers[mIndex] == 0:
            continue
        # now set all multiples to 0
        for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
            allNumbers[index] = 0
    return [2] + filter(lambda n: n!=0, allNumbers)

E os resultados:

>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
...                    "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
...                    "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms
Daniel G
fonte
3

Uma implementação ligeiramente diferente de meia peneira usando Numpy:

http://rebrained.com/?p=458

importar matemática
importar numpy
def prime6 (até):
    primos = numpy.arange (3, até + 1,2)
    isprime = numpy.ones ((até-1) / 2, dtype = bool)
    para fator em números primos [: int (math.sqrt (upto))]:
        se isprime [(fator-2) / 2]: isprime [(fator * 3-2) / 2: (até-1) / 2: fator] = 0
    return numpy.insert (primos [isprime], 0,2)

Alguém pode comparar isso com os outros horários? Na minha máquina, parece bastante comparável à outra meia peneira Numpy.

nolfonzo
fonte
upto=10**6: primesfrom2to()- 7 ms; prime6()- 12 ms ideone.com/oDg2Y
jfs
3

Está tudo escrito e testado. Portanto, não há necessidade de reinventar a roda.

python -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

nos dá um recorde de 12,2 ms !

10 loops, best of 10: 12.2 msec per loop

Se isso não for rápido o suficiente, você pode tentar o PyPy:

pypy -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

o que resulta em:

10 loops, best of 10: 2.03 msec per loop

A resposta com 247 up-votes lista 15,9 ms para a melhor solução. Compare isso !!!

lifolofi
fonte
3

Eu testei algumas funções do unutbu, calculei com o número de milhões de fome

Os vencedores são as funções que usam a biblioteca numpy,

Nota : Também seria interessante fazer um teste de utilização da memória :)

Resultado do tempo de computação

Código de amostra

Código completo no meu repositório github

#!/usr/bin/env python

import lib
import timeit
import sys
import math
import datetime

import prettyplotlib as ppl
import numpy as np

import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl

primenumbers_gen = [
    'sieveOfEratosthenes',
    'ambi_sieve',
    'ambi_sieve_plain',
    'sundaram3',
    'sieve_wheel_30',
    'primesfrom3to',
    'primesfrom2to',
    'rwh_primes',
    'rwh_primes1',
    'rwh_primes2',
]

def human_format(num):
    # /programming/579310/formatting-long-numbers-as-strings-in-python?answertab=active#tab-top
    magnitude = 0
    while abs(num) >= 1000:
        magnitude += 1
        num /= 1000.0
    # add more suffixes if you need them
    return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])


if __name__=='__main__':

    # Vars
    n = 10000000 # number itereration generator
    nbcol = 5 # For decompose prime number generator
    nb_benchloop = 3 # Eliminate false positive value during the test (bench average time)
    datetimeformat = '%Y-%m-%d %H:%M:%S.%f'
    config = 'from __main__ import n; import lib'
    primenumbers_gen = {
        'sieveOfEratosthenes': {'color': 'b'},
        'ambi_sieve': {'color': 'b'},
        'ambi_sieve_plain': {'color': 'b'},
         'sundaram3': {'color': 'b'},
        'sieve_wheel_30': {'color': 'b'},
# # #        'primesfrom2to': {'color': 'b'},
        'primesfrom3to': {'color': 'b'},
        # 'rwh_primes': {'color': 'b'},
        # 'rwh_primes1': {'color': 'b'},
        'rwh_primes2': {'color': 'b'},
    }


    # Get n in command line
    if len(sys.argv)>1:
        n = int(sys.argv[1])

    step = int(math.ceil(n / float(nbcol)))
    nbs = np.array([i * step for i in range(1, int(nbcol) + 1)])
    set2 = brewer2mpl.get_map('Paired', 'qualitative', 12).mpl_colors

    print datetime.datetime.now().strftime(datetimeformat)
    print("Compute prime number to %(n)s" % locals())
    print("")

    results = dict()
    for pgen in primenumbers_gen:
        results[pgen] = dict()
        benchtimes = list()
        for n in nbs:
            t = timeit.Timer("lib.%(pgen)s(n)" % locals(), setup=config)
            execute_times = t.repeat(repeat=nb_benchloop,number=1)
            benchtime = np.mean(execute_times)
            benchtimes.append(benchtime)
        results[pgen] = {'benchtimes':np.array(benchtimes)}

fig, ax = plt.subplots(1)
plt.ylabel('Computation time (in second)')
plt.xlabel('Numbers computed')
i = 0
for pgen in primenumbers_gen:

    bench = results[pgen]['benchtimes']
    avgs = np.divide(bench,nbs)
    avg = np.average(bench, weights=nbs)

    # Compute linear regression
    A = np.vstack([nbs, np.ones(len(nbs))]).T
    a, b = np.linalg.lstsq(A, nbs*avgs)[0]

    # Plot
    i += 1
    #label="%(pgen)s" % locals()
    #ppl.plot(nbs, nbs*avgs, label=label, lw=1, linestyle='--', color=set2[i % 12])
    label="%(pgen)s avg" % locals()
    ppl.plot(nbs, a * nbs + b, label=label, lw=2, color=set2[i % 12])
print datetime.datetime.now().strftime(datetimeformat)

ppl.legend(ax, loc='upper left', ncol=4)

# Change x axis label
ax.get_xaxis().get_major_formatter().set_scientific(False)
fig.canvas.draw()
labels = [human_format(int(item.get_text())) for item in ax.get_xticklabels()]

ax.set_xticklabels(labels)
ax = plt.gca()

plt.show()
Bruno Adelé
fonte
2
para comparar desempenhos algorítmicos , é melhor plotar em escala log-log .
Will Ness
3

Para Python 3

def rwh_primes2(n):
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n//3)
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)//3)      ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
        sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]
SmartManoj
fonte
3

Peneira principal mais rápida em Pure Python :

from itertools import compress

def half_sieve(n):
    """
    Returns a list of prime numbers less than `n`.
    """
    if n <= 2:
        return []
    sieve = bytearray([True]) * (n // 2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
    primes = list(compress(range(1, n, 2), sieve))
    primes[0] = 2
    return primes

Otimizei a Peneira de Eratóstenes para velocidade e memória.

Referência

from time import clock
import platform

def benchmark(iterations, limit):
    start = clock()
    for x in range(iterations):
        half_sieve(limit)
    end = clock() - start
    print(f'{end/iterations:.4f} seconds for primes < {limit}')

if __name__ == '__main__':
    print(platform.python_version())
    print(platform.platform())
    print(platform.processor())
    it = 10
    for pw in range(4, 9):
        benchmark(it, 10**pw)

Resultado

>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000
MrSeeker
fonte
2

Primeira vez que utilizei python, alguns dos métodos que utilizo podem parecer um pouco complicados. Acabei de converter meu código c ++ para python e é isso que tenho (embora um pouco lento em python)

#!/usr/bin/env python
import time

def GetPrimes(n):

    Sieve = [1 for x in xrange(n)]

    Done = False
    w = 3

    while not Done:

        for q in xrange (3, n, 2):
            Prod = w*q
            if Prod < n:
                Sieve[Prod] = 0
            else:
                break

        if w > (n/2):
            Done = True
        w += 2

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes.py

Encontrados 664579 primos em 12.799119 segundos!

#!/usr/bin/env python
import time

def GetPrimes2(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*3, n, k*2):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes2(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes2.py

Encontrados 664579 primos em 10.230172 segundos!

#!/usr/bin/env python
import time

def GetPrimes3(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*k, n, k << 1):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes3(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

python Primes2.py

Encontrados 664579 primos em 7.113776 segundos!

smac89
fonte
2

Eu sei que a competição está fechada há alguns anos. …

No entanto, esta é a minha sugestão para uma peneira primária python pura, com base na omissão dos múltiplos de 2, 3 e 5, usando as etapas apropriadas ao processar a peneira. No entanto, é realmente mais lento para N <10 ^ 9 do que as soluções superiores @Robert William Hanks rwh_primes2 e rwh_primes1. Ao usar uma matriz de peneiras ctypes.c_ushort acima de 1,5 * 10 ^ 8, é adaptável aos limites de memória.

10 ^ 6

$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (1000000))" 10 loops, o melhor de 3: 46,7 ms por loop

para comparar: $ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1 (1000000)" 10 loops, o melhor de 3: 43,2 mseg por loop para comparar: $ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes (1000000) "10 loops, o melhor de 3: 34,5 mseg por loop

10 ^ 7

$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (10000000)" 10 loops, o melhor de 3: 530 ms por loop

para comparar: $ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1 (10000000)" 10 loops, o melhor de 3: 494 mseg por loop para comparar: $ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes (10000000) "10 loops, o melhor de 3: 375 ms por loop

10 ^ 8

$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (100000000))" 10 loops, o melhor de 3: 5,55 s por loop

para comparar: $ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1 (100000000)" 10 loops, o melhor de 3: 5,33 segundos por loop para comparar: $ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes (100000000) "10 loops, o melhor de 3: 3,95 seg por loop

10 ^ 9

$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (1000000000))" 10 loops, o melhor de 3: 61,2 s por loop

para comparar: $ python -mtimeit -n 3 -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1 (1000000000))" 3 loops, o melhor de 3: 97,8 s por loop

para comparar: $ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes2 (1000000000))" 10 loops, o melhor de 3: 41,9 s por loop

Você pode copiar o código abaixo no ubuntus primeSieveSpeedComp para revisar esses testes.

def primeSieveSeq(MAX_Int):
    if MAX_Int > 5*10**8:
        import ctypes
        int16Array = ctypes.c_ushort * (MAX_Int >> 1)
        sieve = int16Array()
        #print 'uses ctypes "unsigned short int Array"'
    else:
        sieve = (MAX_Int >> 1) * [False]
        #print 'uses python list() of long long int'
    if MAX_Int < 10**8:
        sieve[4::3] = [True]*((MAX_Int - 8)/6+1)
        sieve[12::5] = [True]*((MAX_Int - 24)/10+1)
    r = [2, 3, 5]
    n = 0
    for i in xrange(int(MAX_Int**0.5)/30+1):
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
    if MAX_Int < 10**8:
        return [2, 3, 5]+[(p << 1) + 1 for p in [n for n in xrange(3, MAX_Int >> 1) if not sieve[n]]]
    n = n >> 1
    try:
        for i in xrange((MAX_Int-2*n)/30 + 1):
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
    except:
        pass
    return r
ABri
fonte
para visualizar os resultados dos testes, plote-os na escala log-log, para ver e comparar as ordens empíricas de crescimento .
Will Ness
@ Will graças à entrada, eu vou ter isso em mente na próxima vez que eu preciso de tal comparação
ABri
1

Aqui está uma versão numpy do Peneira de Eratóstenes com boa complexidade (menor que a classificação de uma matriz de comprimento n) e vetorização. Comparado aos tempos do @unutbu, é tão rápido quanto os pacotes com 46 microssegundos para encontrar todos os números primos abaixo de um milhão.

import numpy as np 
def generate_primes(n):
    is_prime = np.ones(n+1,dtype=bool)
    is_prime[0:2] = False
    for i in range(int(n**0.5)+1):
        if is_prime[i]:
            is_prime[i**2::i]=False
    return np.where(is_prime)[0]

Horários:

import time    
for i in range(2,10):
    timer =time.time()
    generate_primes(10**i)
    print('n = 10^',i,' time =', round(time.time()-timer,6))

>> n = 10^ 2  time = 5.6e-05
>> n = 10^ 3  time = 6.4e-05
>> n = 10^ 4  time = 0.000114
>> n = 10^ 5  time = 0.000593
>> n = 10^ 6  time = 0.00467
>> n = 10^ 7  time = 0.177758
>> n = 10^ 8  time = 1.701312
>> n = 10^ 9  time = 19.322478
Peter Mølgaard Pallesen
fonte
1

Atualizei grande parte do código do Python 3 e o joguei no perfplot (um projeto meu) para ver qual é realmente o mais rápido. Acontece que, para grandes n, primesfrom{2,3}topegue o bolo:

insira a descrição da imagem aqui


Código para reproduzir o gráfico:

import perfplot
from math import sqrt, ceil
import numpy as np
import sympy


def rwh_primes(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i]:
            sieve[i * i::2 * i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
    return [2] + [i for i in range(3, n, 2) if sieve[i]]


def rwh_primes1(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * (n // 2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
    return [2] + [2 * i + 1 for i in range(1, n // 2) if sieve[i]]


def rwh_primes2(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """Input n>=6, Returns a list of primes, 2 <= p < n"""
    assert n >= 6
    correction = n % 6 > 1
    n = {0: n, 1: n - 1, 2: n + 4, 3: n + 3, 4: n + 2, 5: n + 1}[n % 6]
    sieve = [True] * (n // 3)
    sieve[0] = False
    for i in range(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = [False] * (
                (n // 6 - (k * k) // 6 - 1) // k + 1
            )
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = [False] * (
                (n // 6 - (k * k + 4 * k - 2 * k * (i & 1)) // 6 - 1) // k + 1
            )
    return [2, 3] + [3 * i + 1 | 1 for i in range(1, n // 3 - correction) if sieve[i]]


def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    """ Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com."""
    __smallp = (
        2,
        3,
        5,
        7,
        11,
        13,
        17,
        19,
        23,
        29,
        31,
        37,
        41,
        43,
        47,
        53,
        59,
        61,
        67,
        71,
        73,
        79,
        83,
        89,
        97,
        101,
        103,
        107,
        109,
        113,
        127,
        131,
        137,
        139,
        149,
        151,
        157,
        163,
        167,
        173,
        179,
        181,
        191,
        193,
        197,
        199,
        211,
        223,
        227,
        229,
        233,
        239,
        241,
        251,
        257,
        263,
        269,
        271,
        277,
        281,
        283,
        293,
        307,
        311,
        313,
        317,
        331,
        337,
        347,
        349,
        353,
        359,
        367,
        373,
        379,
        383,
        389,
        397,
        401,
        409,
        419,
        421,
        431,
        433,
        439,
        443,
        449,
        457,
        461,
        463,
        467,
        479,
        487,
        491,
        499,
        503,
        509,
        521,
        523,
        541,
        547,
        557,
        563,
        569,
        571,
        577,
        587,
        593,
        599,
        601,
        607,
        613,
        617,
        619,
        631,
        641,
        643,
        647,
        653,
        659,
        661,
        673,
        677,
        683,
        691,
        701,
        709,
        719,
        727,
        733,
        739,
        743,
        751,
        757,
        761,
        769,
        773,
        787,
        797,
        809,
        811,
        821,
        823,
        827,
        829,
        839,
        853,
        857,
        859,
        863,
        877,
        881,
        883,
        887,
        907,
        911,
        919,
        929,
        937,
        941,
        947,
        953,
        967,
        971,
        977,
        983,
        991,
        997,
    )
    # wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1 = [True] * dim
    tk7 = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x * y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1: tk1, 7: tk7, 11: tk11, 13: tk13, 17: tk17, 19: tk19, 23: tk23, 29: tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))

    # inner functions definition
    def del_mult(tk, start, step):
        for k in range(start, len(tk), step):
            tk[k] = False

    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (
                    (pos + prime)
                    if off == 7
                    else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (
                    (pos + prime)
                    if off == 11
                    else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (
                    (pos + prime)
                    if off == 13
                    else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (
                    (pos + prime)
                    if off == 17
                    else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (
                    (pos + prime)
                    if off == 19
                    else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (
                    (pos + prime)
                    if off == 23
                    else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (
                    (pos + prime)
                    if off == 29
                    else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (
                    (pos + prime)
                    if off == 1
                    else (prime * (const * pos + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]:
            p.append(cpos + 1)
        if tk7[pos]:
            p.append(cpos + 7)
        if tk11[pos]:
            p.append(cpos + 11)
        if tk13[pos]:
            p.append(cpos + 13)
        if tk17[pos]:
            p.append(cpos + 17)
        if tk19[pos]:
            p.append(cpos + 19)
        if tk23[pos]:
            p.append(cpos + 23)
        if tk29[pos]:
            p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos + 1 :]
    # return p list
    return p


def sieve_of_eratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <[email protected]>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = list(range(3, n, 2))
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si * si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]


def sieve_of_atkin(end):
    """return a list of all the prime numbers <end using the Sieve of Atkin."""
    # Code by Steve Krenzel, <[email protected]>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = (end - 1) // 2
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end - 1) / 4.0)), 0, 4
    for xd in range(4, 8 * x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end - x2))
        n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in range((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end - 1) / 3.0)), 0, 3
    for xd in range(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end - x2))
        n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in range((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4 - 8 * (1 - end))) / 4), -1, 0, 3
    for x in range(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end:
            y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x * x + x) << 1) - 1, (((x - 1) << 1) - 2) << 1
        for d in range(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[: max(0, end - 2)]

    for n in range(5 >> 1, (int(sqrt(end)) + 1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in range(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s = int(sqrt(end)) + 1
    if s % 2 == 0:
        s += 1
    primes.extend([i for i in range(s, end, 2) if sieve[i >> 1]])

    return primes


def ambi_sieve_plain(n):
    s = list(range(3, n, 2))
    for m in range(3, int(n ** 0.5) + 1, 2):
        if s[(m - 3) // 2]:
            for t in range((m * m - 3) // 2, (n >> 1) - 1, m):
                s[t] = 0
    return [2] + [t for t in s if t > 0]


def sundaram3(max_n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n + 1, 2)
    half = (max_n) // 2
    initial = 4

    for step in range(3, max_n + 1, 2):
        for i in range(initial, half, step):
            numbers[i - 1] = 0
        initial += 2 * (step + 1)

        if initial > half:
            return [2] + filter(None, numbers)


# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in range(3, int(n ** 0.5) + 1, 2):
        if s[(m - 3) // 2]:
            s[(m * m - 3) // 2::m] = 0
    return np.r_[2, s[s > 0]]


def primesfrom3to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns an array of primes, p < n """
    assert n >= 2
    sieve = np.ones(n // 2, dtype=np.bool)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = False
    return np.r_[2, 2 * np.nonzero(sieve)[0][1::] + 1]


def primesfrom2to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns an array of primes, 2 <= p < n """
    assert n >= 6
    sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool)
    sieve[0] = False
    for i in range(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = False
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0] + 1) | 1)]


def sympy_sieve(n):
    return list(sympy.sieve.primerange(1, n))


perfplot.save(
    "prime.png",
    setup=lambda n: n,
    kernels=[
        rwh_primes,
        rwh_primes1,
        rwh_primes2,
        sieve_wheel_30,
        sieve_of_eratosthenes,
        sieve_of_atkin,
        # ambi_sieve_plain,
        # sundaram3,
        ambi_sieve,
        primesfrom3to,
        primesfrom2to,
        sympy_sieve,
    ],
    n_range=[2 ** k for k in range(3, 25)],
    logx=True,
    logy=True,
    xlabel="n",
)
Nico Schlömer
fonte
0

Meu palpite é que o mais rápido de todos os modos é codificar os primos no seu código.

Então, por que não escrever um script lento que gere outro arquivo de origem que tenha todos os números conectados e importe esse arquivo de origem quando você executar o programa atual.

Obviamente, isso funcionará apenas se você conhecer o limite superior de N em tempo de compilação, mas assim é o caso de (quase) todos os problemas de Euler do projeto.

 

PS: Eu posso estar errado, embora se a análise da fonte com números primos conectados for mais lenta do que computá-los, mas até onde eu sei, o Python é executado a partir de .pycarquivos compilados, então a leitura de uma matriz binária com todos os números primos até N deve ser sangrenta rápido nesse caso.

akuhn
fonte
0

Desculpe incomodar, mas erat2 () tem uma falha séria no algoritmo.

Ao procurar o próximo composto, precisamos testar apenas números ímpares. q, p ambos são ímpares; então q + p é par e não precisa ser testado, mas q + 2 * p é sempre ímpar. Isso elimina o teste "if even" na condição do loop while e economiza cerca de 30% do tempo de execução.

Enquanto estamos nisso: em vez do elegante 'D.pop (q, None)', obtenha e exclua o método use 'se q em D: p = D [q], del D [q]', que é duas vezes mais rápido ! Pelo menos na minha máquina (P3-1Ghz). Então, eu sugiro esta implementação deste algoritmo inteligente:

def erat3( ):
    from itertools import islice, count

    # q is the running integer that's checked for primeness.
    # yield 2 and no other even number thereafter
    yield 2
    D = {}
    # no need to mark D[4] as we will test odd numbers only
    for q in islice(count(3),0,None,2):
        if q in D:                  #  is composite
            p = D[q]
            del D[q]
            # q is composite. p=D[q] is the first prime that
            # divides it. Since we've reached q, we no longer
            # need it in the map, but we'll mark the next
            # multiple of its witnesses to prepare for larger
            # numbers.
            x = q + p+p        # next odd(!) multiple
            while x in D:      # skip composites
                x += p+p
            D[x] = p
        else:                  # is prime
            # q is a new prime.
            # Yield it and mark its first multiple that isn't
            # already marked in previous iterations.
            D[q*q] = q
            yield q
user1016274
fonte
para uma adição adiada de números primos no ditado (até que o quadrado de um primo seja visto na entrada), consulte stackoverflow.com/a/10733621/849891 .
Will Ness
0

O método mais rápido que tentei até agora é baseado na função do livro de receitas Pythonerat2 :

import itertools as it
def erat2a( ):
    D = {  }
    yield 2
    for q in it.islice(it.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = q + 2*p
            while x in D:
                x += 2*p
            D[x] = p

Veja esta resposta para obter uma explicação sobre a aceleração.

tzot
fonte
0

Talvez eu esteja atrasado para a festa, mas terei que adicionar meu próprio código para isso. Ele usa aproximadamente n / 2 no espaço, porque não precisamos armazenar números pares e eu também uso o módulo python bitarray, reduzindo consideravelmente o consumo de memória e permitindo a computação de números primos de até 1.000.000.000

from bitarray import bitarray
def primes_to(n):
    size = n//2
    sieve = bitarray(size)
    sieve.setall(1)
    limit = int(n**0.5)
    for i in range(1,limit):
        if sieve[i]:
            val = 2*i+1
            sieve[(i+i*val)::val] = 0
    return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]

python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop

Isso foi executado em um MAC OSX 10.8.3 de 64 bits e 2.4GHZ

cobie
fonte
11
postar um tempo para uma máquina desconhecida não diz nada. A resposta aceita aqui diz "sem psyco, para n = 1000000, rwh_primes2 foi o mais rápido". Então, se você fornecer seus horários para esse código, bem como o seu, na mesma máquina, e aos 2, 4, 10 milhões, bem como, em seguida, que seria muito mais informativo.
Will Ness
-1, esse código depende de recursos especiais do bitarray implementado em C, e é por isso que o código é rápido, pois a maior parte do trabalho está sendo realizada no código nativo na atribuição de fatia. O pacote bitarray QUEBRA a definição padrão para fatias apropriadas (indexado ao longo de um intervalo) para sequências mutáveis na medida em que permite atribuir um único boolean 0/1 ou Verdadeiro / Falso para todos os elementos da fatia, enquanto que o comportamento padrão para pura Python parece para não permitir isso e permitir apenas o valor de atribuição 0, caso em que é tratado como um del de todos os elementos de fatia da sequência / matriz.
precisa saber é o seguinte
continuação: Se a chamada de código nativo não padrão fosse comparada, também poderíamos escrever um pacote gerador de sequência "fastprimes" com base no código C, como o do primesieve de Kim Walisch, e gerar todos os primos nos quatro bilhões mais 32 número de bits em apenas alguns segundos com uma única chamada para o gerador de sequência. Isso também usaria quase nenhuma memória, pois o código vinculado é baseado em uma Peneira de Eratóstenes segmentada e, portanto, usa apenas alguns dezenas de Kilobytes de RAM, e se uma sequência fosse gerada, não haveria armazenamento de lista necessário.
precisa saber é o seguinte
0

Eu coletei várias peneiras de número primo ao longo do tempo. O mais rápido do meu computador é o seguinte:

from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
    a = [True] * limit
    a[0] = a[1] = False
    #a[2] = True
    for n in xrange(4, limit, 2):
        a[n] = False
    root_limit = int(limit**.5)+1
    for i in xrange(3,root_limit):
        if a[i]:
            for n in xrange(i*i, limit, 2*i):
                a[n] = False
    return a

LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s
Stefan Gruenwald
fonte
0

Estou lentamente respondendo a essa pergunta, mas parecia um exercício divertido. Estou usando numpy que pode estar trapaceando e duvido que esse método seja o mais rápido, mas deve ficar claro. Ele peneira uma matriz booleana referente apenas a seus índices e extrai números primos dos índices de todos os valores True. Nenhum módulo necessário.

import numpy as np
def ajs_primes3a(upto):
    mat = np.ones((upto), dtype=bool)
    mat[0] = False
    mat[1] = False
    mat[4::2] = False
    for idx in range(3, int(upto ** 0.5)+1, 2):
        mat[idx*2::idx] = False
    return np.where(mat == True)[0]
Alan James Salmoni
fonte
está incorreto, por exemplo, ajs_primes3a(10)-> array([2, 3, 5, 7, 9]). 9não é um primo
jfs
Você viu um caso que eu não tinha - muito bem! O problema estava em 'para idx no intervalo (3, int (até ** 0,5), 2):' que deve ser 'para idx no intervalo (3, int (até ** 0,5) + 1, 2):'. Obrigado, mas funciona agora.
Alan James Salmoni
O motivo foi que o loop idx subiu para 'até ** 05', que para casos de até 15 inclusive. A partir de 16, ele funciona bem. Esse era um conjunto de casos extremos para os quais eu não havia testado. Adicionar 1 significa que deve funcionar para todos os números.
27615 Alan James Salmoni
Parece que funciona agora. São as numpysoluções mais lentas entre as que retornam uma matriz. Nota: nenhuma implementação verdadeira da Peneira de Eratóstenes usa o módulo - não é necessário mencionar. Você poderia usar em mat[idx*idx::idx]vez de mat[idx*2::idx]. E ao np.nonzero(mat)[0]invés de np.where(mat == True)[0].
jfs
Obrigado JF. Testei contra o prime6 () e obtive um resultado mais rápido até (IIRC) cerca de 250k quando o prime6 () assumiu. primesfrom2to () foi mais rápido. Até 20m, ajs_primes3a () levou 0,034744977951ms, prime6 () levou 0,0222899913788ms e primesfrom2to () levou 0,0104751586914ms (mesma máquina, mesma carga, melhor de 10 tempos). É honestamente melhor do que eu pensava!
Alan James Salmoni
0

Aqui está uma técnica interessante para gerar números primos (ainda não os mais eficientes) usando a compreensão de lista do python:

noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]

Você pode encontrar o exemplo e algumas explicações aqui

Alexander
fonte