Como determinar a subsequência crescente mais longa usando programação dinâmica?

Respostas:

404

OK, descreverei primeiro a solução mais simples que é O (N ^ 2), onde N é o tamanho da coleção. Também existe uma solução O (N log N), que descreverei também. Procure aqui na seção Algoritmos eficientes.

Assumirei que os índices da matriz são de 0 a N - 1. Então, vamos definir DP[i]o comprimento do LIS (Maior subsequência crescente) que termina no elemento com o índice i. Para calcular DP[i], analisamos todos os índices j < ie verificamos se DP[j] + 1 > DP[i]e array[j] < array[i](queremos que ele esteja aumentando). Se isso for verdade, podemos atualizar o atual ideal para DP[i]. Para encontrar o melhor global para a matriz, você pode obter o valor máximo DP[0...N - 1].

int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;

for (int i = 1; i < N; i++)
{
   DP[i] = 1;
   prev[i] = -1;

   for (int j = i - 1; j >= 0; j--)
      if (DP[j] + 1 > DP[i] && array[j] < array[i])
      {
         DP[i] = DP[j] + 1;
         prev[i] = j;
      }

   if (DP[i] > maxLength)
   {
      bestEnd = i;
      maxLength = DP[i];
   }
}

Eu uso a matriz prevpara poder encontrar mais tarde a sequência real, não apenas seu comprimento. Basta voltar recursivamente a partir bestEndde um loop usando prev[bestEnd]. O -1valor é um sinal para parar.


OK, agora a O(N log N)solução mais eficiente :

Vamos S[pos]ser definidos como o menor número inteiro que termina uma sequência crescente de comprimento pos. Agora, percorra todos os números inteiros Xdo conjunto de entrada e faça o seguinte:

  1. Se X> último elemento Sentrar, adicione Xno final de S. Essencialmente, isso significa que encontramos um novo maior LIS.

  2. Caso contrário, encontre o menor elemento em S, que é >=than Xe altere-o para X. Porque Sé ordenada a qualquer momento, o elemento pode ser encontrado usando pesquisa binária em log(N).

Tempo de execução total - Nnúmeros inteiros e uma pesquisa binária para cada um deles - N * log (N) = O (N log N)

Agora vamos fazer um exemplo real:

Coleção de números inteiros: 2 6 3 4 1 2 9 5 8

Passos:

0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS

Portanto, o comprimento do LIS é 5(o tamanho de S).

Para reconstruir o real, LISusaremos novamente uma matriz pai. Let parent[i]Ser o antecessor do elemento com índice ino LISfinal no elemento com índice i.

Para simplificar, podemos manter a matriz S, não os inteiros reais, mas seus índices (posições) no conjunto. Nós não mantemos {1, 2, 4, 5, 8}, mas mantemos {4, 5, 3, 7, 8}.

Isso é entrada [4] = 1 , entrada [5] = 2 , entrada [3] = 4 , entrada [7] = 5 , entrada [8] = 8 .

Se atualizarmos corretamente a matriz pai, o LIS real será:

input[S[lastElementOfS]], 
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................

Agora, o importante: como atualizamos a matriz pai? Existem duas opções:

  1. Se X> último elemento entrar S, então parent[indexX] = indexLastElement. Isso significa que o pai do elemento mais novo é o último elemento. Nós apenas anexamos Xao final de S.

  2. Caso contrário, encontre o índice do menor elemento em S, que é >=than Xe altere-o para X. Aqui parent[indexX] = S[index - 1].

Petar Minchev
fonte
4
Não importa. Se DP[j] + 1 == DP[i], em seguida, DP[i]não vai se tornar melhor com DP[i] = DP[j] + 1. Estamos tentando otimizar DP[i].
Petar Minchev 02/11/2012
11
Mas aqui a resposta deve ser [1,2,5,8]: 4 vem antes de 1 na matriz, como pode ser o LIS [1,2,4,5,8]?
SexyBeast
19
@Cupidvogel - A resposta é [2,3,4,5,8]. Leia com atenção - a Smatriz DOES NOTrepresenta uma sequência real. Let S[pos] be defined as the smallest integer that ends an increasing sequence of length pos.
Petar Minchev
8
Não vejo muitas explicações tão claras. Não é muito fácil de entender, porque as dúvidas são esclarecidas na explicação, mas também soluciona qualquer problema de implementação que possa surgir. Impressionante.
Boyang
16
geeksforgeeks.org/... é, provavelmente, a melhor explicação para isso eu já vi
eb80
57

A explicação de Petar Minchev ajudou a esclarecer as coisas para mim, mas era difícil analisar o que era tudo, então fiz uma implementação em Python com nomes de variáveis ​​excessivamente descritivos e muitos comentários. Eu fiz uma solução recursiva ingênua, a solução O (n ^ 2) e a solução O (n log n).

Espero que ajude a esclarecer os algoritmos!

A solução recursiva

def recursive_solution(remaining_sequence, bigger_than=None):
    """Finds the longest increasing subsequence of remaining_sequence that is      
    bigger than bigger_than and returns it.  This solution is O(2^n)."""

    # Base case: nothing is remaining.                                             
    if len(remaining_sequence) == 0:
        return remaining_sequence

    # Recursive case 1: exclude the current element and process the remaining.     
    best_sequence = recursive_solution(remaining_sequence[1:], bigger_than)

    # Recursive case 2: include the current element if it's big enough.            
    first = remaining_sequence[0]

    if (first > bigger_than) or (bigger_than is None):

        sequence_with = [first] + recursive_solution(remaining_sequence[1:], first)

        # Choose whichever of case 1 and case 2 were longer.                         
        if len(sequence_with) >= len(best_sequence):
            best_sequence = sequence_with

    return best_sequence                                                        

A solução de programação dinâmica O (n ^ 2)

def dynamic_programming_solution(sequence):
    """Finds the longest increasing subsequence in sequence using dynamic          
    programming.  This solution is O(n^2)."""

    longest_subsequence_ending_with = []
    backreference_for_subsequence_ending_with = []
    current_best_end = 0

    for curr_elem in range(len(sequence)):
        # It's always possible to have a subsequence of length 1.                    
        longest_subsequence_ending_with.append(1)

        # If a subsequence is length 1, it doesn't have a backreference.             
        backreference_for_subsequence_ending_with.append(None)

        for prev_elem in range(curr_elem):
            subsequence_length_through_prev = (longest_subsequence_ending_with[prev_elem] + 1)

            # If the prev_elem is smaller than the current elem (so it's increasing)   
            # And if the longest subsequence from prev_elem would yield a better       
            # subsequence for curr_elem.                                               
            if ((sequence[prev_elem] < sequence[curr_elem]) and
                    (subsequence_length_through_prev >
                         longest_subsequence_ending_with[curr_elem])):

                # Set the candidate best subsequence at curr_elem to go through prev.    
                longest_subsequence_ending_with[curr_elem] = (subsequence_length_through_prev)
                backreference_for_subsequence_ending_with[curr_elem] = prev_elem
                # If the new end is the best, update the best.    

        if (longest_subsequence_ending_with[curr_elem] >
                longest_subsequence_ending_with[current_best_end]):
            current_best_end = curr_elem
            # Output the overall best by following the backreferences.  

    best_subsequence = []
    current_backreference = current_best_end

    while current_backreference is not None:
        best_subsequence.append(sequence[current_backreference])
        current_backreference = (backreference_for_subsequence_ending_with[current_backreference])

    best_subsequence.reverse()

    return best_subsequence                                                   

A solução de programação dinâmica O (n log n)

def find_smallest_elem_as_big_as(sequence, subsequence, elem):
    """Returns the index of the smallest element in subsequence as big as          
    sequence[elem].  sequence[elem] must not be larger than every element in       
    subsequence.  The elements in subsequence are indices in sequence.  Uses       
    binary search."""

    low = 0
    high = len(subsequence) - 1

    while high > low:
        mid = (high + low) / 2
        # If the current element is not as big as elem, throw out the low half of    
        # sequence.                                                                  
        if sequence[subsequence[mid]] < sequence[elem]:
            low = mid + 1
            # If the current element is as big as elem, throw out everything bigger, but 
        # keep the current element.                                                  
        else:
            high = mid

    return high


def optimized_dynamic_programming_solution(sequence):
    """Finds the longest increasing subsequence in sequence using dynamic          
    programming and binary search (per                                             
    http://en.wikipedia.org/wiki/Longest_increasing_subsequence).  This solution   
    is O(n log n)."""

    # Both of these lists hold the indices of elements in sequence and not the        
    # elements themselves.                                                         
    # This list will always be sorted.                                             
    smallest_end_to_subsequence_of_length = []

    # This array goes along with sequence (not                                     
    # smallest_end_to_subsequence_of_length).  Following the corresponding element 
    # in this array repeatedly will generate the desired subsequence.              
    parent = [None for _ in sequence]

    for elem in range(len(sequence)):
        # We're iterating through sequence in order, so if elem is bigger than the   
        # end of longest current subsequence, we have a new longest increasing          
        # subsequence.                                                               
        if (len(smallest_end_to_subsequence_of_length) == 0 or
                    sequence[elem] > sequence[smallest_end_to_subsequence_of_length[-1]]):
            # If we are adding the first element, it has no parent.  Otherwise, we        
            # need to update the parent to be the previous biggest element.            
            if len(smallest_end_to_subsequence_of_length) > 0:
                parent[elem] = smallest_end_to_subsequence_of_length[-1]
            smallest_end_to_subsequence_of_length.append(elem)
        else:
            # If we can't make a longer subsequence, we might be able to make a        
            # subsequence of equal size to one of our earlier subsequences with a         
            # smaller ending number (which makes it easier to find a later number that 
            # is increasing).                                                          
            # Thus, we look for the smallest element in                                
            # smallest_end_to_subsequence_of_length that is at least as big as elem       
            # and replace it with elem.                                                
            # This preserves correctness because if there is a subsequence of length n 
            # that ends with a number smaller than elem, we could add elem on to the   
            # end of that subsequence to get a subsequence of length n+1.              
            location_to_replace = find_smallest_elem_as_big_as(sequence, smallest_end_to_subsequence_of_length, elem)
            smallest_end_to_subsequence_of_length[location_to_replace] = elem
            # If we're replacing the first element, we don't need to update its parent 
            # because a subsequence of length 1 has no parent.  Otherwise, its parent  
            # is the subsequence one shorter, which we just added onto.                
            if location_to_replace != 0:
                parent[elem] = (smallest_end_to_subsequence_of_length[location_to_replace - 1])

    # Generate the longest increasing subsequence by backtracking through parent.  
    curr_parent = smallest_end_to_subsequence_of_length[-1]
    longest_increasing_subsequence = []

    while curr_parent is not None:
        longest_increasing_subsequence.append(sequence[curr_parent])
        curr_parent = parent[curr_parent]

    longest_increasing_subsequence.reverse()

    return longest_increasing_subsequence         
Sam King
fonte
19
Embora eu aprecie o esforço aqui, meus olhos doem quando olho para esses pseudo-códigos.
mostruash
94
mostruash - Não sei o que você quer dizer. Minha resposta não tem pseudo-código; tem Python.
Sam King
10
Bem, ele provavelmente significa sua convenção de nomenclatura de variáveis e funções, que também fez meus olhos 'dor'
Adilli Adil
19
Se você quer dizer minha convenção de nomenclatura, estou seguindo principalmente o Guia de estilos do Google Python. Se você está defendendo nomes curtos de variáveis, prefiro nomes descritivos de variáveis, porque eles tornam o código mais fácil de entender e manter.
Sam King
10
Para uma implementação real, provavelmente faria sentido usar bisect. Para demonstrar como um algoritmo funciona e suas características de desempenho, eu estava tentando manter as coisas o mais primitivas possível.
Sam King
22

Falando sobre a solução DP, achei surpreendente que ninguém mencionasse o fato de que o LIS pode ser reduzido a LCS . Tudo o que você precisa fazer é classificar a cópia da sequência original, remover todas as duplicatas e executar o LCS. No pseudocódigo, é:

def LIS(S):
    T = sort(S)
    T = removeDuplicates(T)
    return LCS(S, T)

E a implementação completa escrita em Go. Você não precisa manter toda a matriz n ^ 2 DP se não precisar reconstruir a solução.

func lcs(arr1 []int) int {
    arr2 := make([]int, len(arr1))
    for i, v := range arr1 {
        arr2[i] = v
    }
    sort.Ints(arr1)
    arr3 := []int{}
    prev := arr1[0] - 1
    for _, v := range arr1 {
        if v != prev {
            prev = v
            arr3 = append(arr3, v)
        }
    }

    n1, n2 := len(arr1), len(arr3)

    M := make([][]int, n2 + 1)
    e := make([]int, (n1 + 1) * (n2 + 1))
    for i := range M {
        M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
    }

    for i := 1; i <= n2; i++ {
        for j := 1; j <= n1; j++ {
            if arr2[j - 1] == arr3[i - 1] {
                M[i][j] = M[i - 1][j - 1] + 1
            } else if M[i - 1][j] > M[i][j - 1] {
                M[i][j] = M[i - 1][j]
            } else {
                M[i][j] = M[i][j - 1]
            }
        }
    }

    return M[n2][n1]
}
Salvador Dalí
fonte
@max sim, ele é uma espécie de escrita na resposta com LCS, n ^ 2 matriz
Salvador Dali
10

A implementação C ++ a seguir inclui também algum código que cria a subsequência crescente mais longa real usando uma matriz chamada prev.

std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
    int best_end = 0;
    int sz = s.size();

    if (!sz)
        return std::vector<int>();

    std::vector<int> prev(sz,-1);
    std::vector<int> memo(sz, 0);

    int max_length = std::numeric_limits<int>::min();

    memo[0] = 1;

    for ( auto i = 1; i < sz; ++i)
    {
        for ( auto j = 0; j < i; ++j)
        {
            if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
            {
                memo[i] =  memo[j] + 1;
                prev[i] =  j;
            }
        }

        if ( memo[i] > max_length ) 
        {
            best_end = i;
            max_length = memo[i];
        }
    }

    // Code that builds the longest increasing subsequence using "prev"
    std::vector<int> results;
    results.reserve(sz);

    std::stack<int> stk;
    int current = best_end;

    while (current != -1)
    {
        stk.push(s[current]);
        current = prev[current];
    }

    while (!stk.empty())
    {
        results.push_back(stk.top());
        stk.pop();
    }

    return results;
}

Implementação sem pilha apenas inverta o vetor

#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
  auto sz = v.size();
  if(!sz)
    return v;
  std::vector<int> memo(sz, 0);
  std::vector<int> prev(sz, -1);
  memo[0] = 1;
  int best_end = 0;
  int max_length = std::numeric_limits<int>::min();
  for (auto i = 1; i < sz; ++i) {
    for ( auto j = 0; j < i ; ++j) {
      if (s[j] < s[i] && memo[i] < memo[j] + 1) {
        memo[i] = memo[j] + 1;
        prev[i] = j;
      }
    }
    if(memo[i] > max_length) {
      best_end = i;
      max_length = memo[i];
    }
  }

  // create results
  std::vector<int> results;
  results.reserve(v.size());
  auto current = best_end;
  while (current != -1) {
    results.push_back(s[current]);
    current = prev[current];
  }
  std::reverse(results.begin(), results.end());
  return results;
}
bjackfly
fonte
4

Aqui estão três etapas para avaliar o problema do ponto de vista da programação dinâmica:

  1. Definição de recorrência: maxLength (i) == 1 + maxLength (j) em que 0 <j <ie matriz [i]> matriz [j]
  2. Limite do parâmetro de recorrência: pode haver de 0 a 1 - sub-sequências passadas como um parâmetro
  3. Ordem de avaliação: como está aumentando a sub-sequência, deve ser avaliada de 0 a n

Se tomarmos como exemplo uma sequência {0, 8, 2, 3, 7, 9}, no índice:

  • [0] obteremos a subsequência {0} como um caso base
  • [1] temos 1 nova subsequência {0, 8}
  • [2] tentando avaliar duas novas seqüências {0, 8, 2} e {0, 2} adicionando elemento no índice 2 às sub sequências existentes - apenas uma é válida, portanto, adicionando apenas a terceira sequência possível {0, 2} para a lista de parâmetros ...

Aqui está o código C ++ 11 funcional:

#include <iostream>
#include <vector>

int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
    if(index == 0) {
        sub.push_back(std::vector<int>{sequence[0]});
        return 1;
    }

    size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
    std::vector<std::vector<int>> tmpSubSeq;
    for(std::vector<int> &subSeq : sub) {
        if(subSeq[subSeq.size() - 1] < sequence[index]) {
            std::vector<int> newSeq(subSeq);
            newSeq.push_back(sequence[index]);
            longestSubSeq = std::max(longestSubSeq, newSeq.size());
            tmpSubSeq.push_back(newSeq);
        }
    }
    std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
              std::back_insert_iterator<std::vector<std::vector<int>>>(sub));

    return longestSubSeq;
}

int getLongestIncSub(const std::vector<int> &sequence) {
    std::vector<std::vector<int>> sub;
    return getLongestIncSub(sequence, sequence.size() - 1, sub);
}

int main()
{
    std::vector<int> seq{0, 8, 2, 3, 7, 9};
    std::cout << getLongestIncSub(seq);
    return 0;
}
Iuri Covalisin
fonte
Eu acho que a definição de recorrência deve ser maxLength (i) = 1 + max (maxLength (j)) para 0 <j <ie array [i]> array [j] em vez de sem o max ().
Slothworks
1

Aqui está uma implementação Scala do algoritmo O (n ^ 2):

object Solve {
  def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
    xs.foldLeft(List[(Int, List[T])]()) {
      (sofar, x) =>
        if (sofar.isEmpty) List((1, List(x)))
        else {
          val resIfEndsAtCurr = (sofar, xs).zipped map {
            (tp, y) =>
              val len = tp._1
              val seq = tp._2
              if (ord.lteq(y, x)) {
                (len + 1, x :: seq) // reversely recorded to avoid O(n)
              } else {
                (1, List(x))
              }
          }
          sofar :+ resIfEndsAtCurr.maxBy(_._1)
        }
    }.maxBy(_._1)._2.reverse
  }

  def main(args: Array[String]) = {
    println(longestIncrSubseq(List(
      0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
  }
}
lcn
fonte
1

Aqui está outra implementação O (n ^ 2) JAVA. Nenhuma recursão / memorização para gerar a subsequência real. Apenas uma matriz de strings que armazena o LIS real em cada estágio e uma matriz para armazenar o comprimento do LIS para cada elemento. Muito fácil. Dar uma olhada:

import java.io.BufferedReader;
import java.io.InputStreamReader;

/**
 * Created by Shreyans on 4/16/2015
 */

class LNG_INC_SUB//Longest Increasing Subsequence
{
    public static void main(String[] args) throws Exception
    {
        BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Enter Numbers Separated by Spaces to find their LIS\n");
        String[] s1=br.readLine().split(" ");
        int n=s1.length;
        int[] a=new int[n];//Array actual of Numbers
        String []ls=new String[n];// Array of Strings to maintain LIS for every element
        for(int i=0;i<n;i++)
        {
            a[i]=Integer.parseInt(s1[i]);
        }
        int[]dp=new int[n];//Storing length of max subseq.
        int max=dp[0]=1;//Defaults
        String seq=ls[0]=s1[0];//Defaults
        for(int i=1;i<n;i++)
        {
            dp[i]=1;
            String x="";
            for(int j=i-1;j>=0;j--)
            {
                //First check if number at index j is less than num at i.
                // Second the length of that DP should be greater than dp[i]
                // -1 since dp of previous could also be one. So we compare the dp[i] as empty initially
                if(a[j]<a[i]&&dp[j]>dp[i]-1)
                {
                    dp[i]=dp[j]+1;//Assigning temp length of LIS. There may come along a bigger LIS of a future a[j]
                    x=ls[j];//Assigning temp LIS of a[j]. Will append a[i] later on
                }
            }
            x+=(" "+a[i]);
            ls[i]=x;
            if(dp[i]>max)
            {
                max=dp[i];
                seq=ls[i];
            }
        }
        System.out.println("Length of LIS is: " + max + "\nThe Sequence is: " + seq);
    }
}

Código em ação: http://ideone.com/sBiOQx

bholagabbar
fonte
0

Isso pode ser resolvido em O (n ^ 2) usando a programação dinâmica. Código Python para o mesmo seria como: -

def LIS(numlist):
    LS = [1]
    for i in range(1, len(numlist)):
        LS.append(1)
        for j in range(0, i):
            if numlist[i] > numlist[j] and LS[i]<=LS[j]:
                LS[i] = 1 + LS[j]
    print LS
    return max(LS)

numlist = map(int, raw_input().split(' '))
print LIS(numlist)

Para entrada:5 19 5 81 50 28 29 1 83 23

saída seria:[1, 2, 1, 3, 3, 3, 4, 1, 5, 3] 5

O list_index da lista de saída é o list_index da lista de entrada. O valor em um determinado list_index na lista de saída indica o maior comprimento de subsequência crescente para esse list_index.

Barun Sharma
fonte
0

aqui está a implementação do java O (nlogn)

import java.util.Scanner;

public class LongestIncreasingSeq {


    private static int binarySearch(int table[],int a,int len){

        int end = len-1;
        int beg = 0;
        int mid = 0;
        int result = -1;
        while(beg <= end){
            mid = (end + beg) / 2;
            if(table[mid] < a){
                beg=mid+1;
                result = mid;
            }else if(table[mid] == a){
                return len-1;
            }else{
                end = mid-1;
            }
        }
        return result;
    }

    public static void main(String[] args) {        

//        int[] t = {1, 2, 5,9,16};
//        System.out.println(binarySearch(t , 9, 5));
        Scanner in = new Scanner(System.in);
        int size = in.nextInt();//4;

        int A[] = new int[size];
        int table[] = new int[A.length]; 
        int k = 0;
        while(k<size){
            A[k++] = in.nextInt();
            if(k<size-1)
                in.nextLine();
        }        
        table[0] = A[0];
        int len = 1; 
        for (int i = 1; i < A.length; i++) {
            if(table[0] > A[i]){
                table[0] = A[i];
            }else if(table[len-1]<A[i]){
                table[len++]=A[i];
            }else{
                table[binarySearch(table, A[i],len)+1] = A[i];
            }            
        }
        System.out.println(len);
    }    
}
fatih tekin
fonte
0

Esta é uma implementação Java em O (n ^ 2). Eu apenas não usei a Pesquisa binária para encontrar o menor elemento em S, que é> = que X. Eu apenas usei um loop for. Usar a Pesquisa Binária tornaria a complexidade em O (n logn)

public static void olis(int[] seq){

    int[] memo = new int[seq.length];

    memo[0] = seq[0];
    int pos = 0;

    for (int i=1; i<seq.length; i++){

        int x = seq[i];

            if (memo[pos] < x){ 
                pos++;
                memo[pos] = x;
            } else {

                for(int j=0; j<=pos; j++){
                    if (memo[j] >= x){
                        memo[j] = x;
                        break;
                    }
                }
            }
            //just to print every step
            System.out.println(Arrays.toString(memo));
    }

    //the final array with the LIS
    System.out.println(Arrays.toString(memo));
    System.out.println("The length of lis is " + (pos + 1));

}
Shashank Agarwal
fonte
0

faça o checkout do código em java para maior subsequência crescente com os elementos da matriz

http://ideone.com/Nd2eba

/**
 **    Java Program to implement Longest Increasing Subsequence Algorithm
 **/

import java.util.Scanner;

/** Class  LongestIncreasingSubsequence **/
 class  LongestIncreasingSubsequence
{
    /** function lis **/
    public int[] lis(int[] X)
    {        
        int n = X.length - 1;
        int[] M = new int[n + 1];  
        int[] P = new int[n + 1]; 
        int L = 0;

        for (int i = 1; i < n + 1; i++)
        {
            int j = 0;

            /** Linear search applied here. Binary Search can be applied too.
                binary search for the largest positive j <= L such that 
                X[M[j]] < X[i] (or set j = 0 if no such value exists) **/

            for (int pos = L ; pos >= 1; pos--)
            {
                if (X[M[pos]] < X[i])
                {
                    j = pos;
                    break;
                }
            }            
            P[i] = M[j];
            if (j == L || X[i] < X[M[j + 1]])
            {
                M[j + 1] = i;
                L = Math.max(L,j + 1);
            }
        }

        /** backtrack **/

        int[] result = new int[L];
        int pos = M[L];
        for (int i = L - 1; i >= 0; i--)
        {
            result[i] = X[pos];
            pos = P[pos];
        }
        return result;             
    }

    /** Main Function **/
    public static void main(String[] args) 
    {    
        Scanner scan = new Scanner(System.in);
        System.out.println("Longest Increasing Subsequence Algorithm Test\n");

        System.out.println("Enter number of elements");
        int n = scan.nextInt();
        int[] arr = new int[n + 1];
        System.out.println("\nEnter "+ n +" elements");
        for (int i = 1; i <= n; i++)
            arr[i] = scan.nextInt();

        LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence(); 
        int[] result = obj.lis(arr);       

        /** print result **/ 

        System.out.print("\nLongest Increasing Subsequence : ");
        for (int i = 0; i < result.length; i++)
            System.out.print(result[i] +" ");
        System.out.println();
    }
}
Jayant Singh
fonte
0

Isso pode ser resolvido em O (n ^ 2) usando programação dinâmica.

Processe os elementos de entrada em ordem e mantenha uma lista de tuplas para cada elemento. Cada tupla (A, B), para o elemento i, denota, A = comprimento da subseqüência crescente mais longa que termina em ie B = índice do predecessor da lista [i] na subseqüência crescente mais longa que termina na lista [i ]

A partir do elemento 1, a lista de tupla para o elemento 1 será [(1,0)] para o elemento i, verifique a lista 0..i e encontre a lista de elementos [k] de forma que a lista [k] <lista [i] , o valor de A para o elemento i, Ai será Ak + 1 e Bi será k. Se houver vários desses elementos, adicione-os à lista de tuplas do elemento i.

No final, encontre todos os elementos com valor máximo de A (comprimento do LIS terminado no elemento) e volte usando as tuplas para obter a lista.

Compartilhei o código para o mesmo em http://www.edufyme.com/code/?id=66f041e16a60928b05a7e228a89c3799

Somil Bhandari
fonte
3
Você deve incluir o código na sua resposta, pois os links podem quebrar.
NathanOliver
0

Implementação O (n ^ 2) java:

void LIS(int arr[]){
        int maxCount[]=new int[arr.length];
        int link[]=new int[arr.length];
        int maxI=0;
        link[0]=0;
        maxCount[0]=0;

        for (int i = 1; i < arr.length; i++) {
            for (int j = 0; j < i; j++) {
                if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
                    maxCount[i]=maxCount[j]+1;
                    link[i]=j;
                    if(maxCount[i]>maxCount[maxI]){
                        maxI=i;
                    }
                }
            }
        }


        for (int i = 0; i < link.length; i++) {
            System.out.println(arr[i]+"   "+link[i]);
        }
        print(arr,maxI,link);

    }

    void print(int arr[],int index,int link[]){
        if(link[index]==index){
            System.out.println(arr[index]+" ");
            return;
        }else{
            print(arr, link[index], link);
            System.out.println(arr[index]+" ");
        }
    }
Mostafizar
fonte
0
def longestincrsub(arr1):
    n=len(arr1)
    l=[1]*n
    for i in range(0,n):
        for j in range(0,i)  :
            if arr1[j]<arr1[i] and l[i]<l[j] + 1:
                l[i] =l[j] + 1
    l.sort()
    return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)

mesmo que exista uma maneira pela qual você possa resolver isso no tempo O (nlogn) (isso resolve no tempo O (n ^ 2)), mas ainda assim dessa maneira forneça a abordagem de programação dinâmica que também é boa.

Ravi Tanwar
fonte
0

Aqui está minha solução Leetcode usando a Pesquisa binária: ->

class Solution:
    def binary_search(self,s,x):
        low=0
        high=len(s)-1
        flag=1
        while low<=high:
              mid=(high+low)//2
              if s[mid]==x:
                 flag=0
                 break
              elif s[mid]<x:
                  low=mid+1
              else:
                 high=mid-1
        if flag:
           s[low]=x
        return s

    def lengthOfLIS(self, nums: List[int]) -> int:
         if not nums:
            return 0
         s=[]
         s.append(nums[0])
         for i in range(1,len(nums)):
             if s[-1]<nums[i]:
                s.append(nums[i])
             else:
                 s=self.binary_search(s,nums[i])
         return len(s)
Abhinav Vajpeyi
fonte
0

Solução LIS mais simples em C ++ com complexidade de tempo O (nlog (n))

#include <iostream>
#include "vector"
using namespace std;

// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
    if(beg<=end)
    {
        int mid = (beg+end)/2;
        if(a[mid] == value)
            return mid;
        else if(value < a[mid])
            return ceilBinarySearch(a,beg,mid-1,value);
        else
            return ceilBinarySearch(a,mid+1,end,value);

    return 0;
    }

    return beg;

}
int lis(vector<int> arr)
{
    vector<int> dp(arr.size(),0);
    int len = 0;
    for(int i = 0;i<arr.size();i++)
    {
        int j = ceilBinarySearch(dp,0,len-1,arr[i]);
        dp[j] = arr[i];
        if(j == len)
            len++;

    }
    return len;
}

int main()
{
    vector<int> arr  {2, 5,-1,0,6,1,2};
    cout<<lis(arr);
    return 0;
}

SAÍDA:
4

Ashish kumar
fonte
0

Maior sequência crescente (Java)

import java.util.*;

class ChainHighestValue implements Comparable<ChainHighestValue>{
    int highestValue;
    int chainLength;
    ChainHighestValue(int highestValue,int chainLength) {
        this.highestValue = highestValue;
        this.chainLength = chainLength;
    }
    @Override
    public int compareTo(ChainHighestValue o) {
       return this.chainLength-o.chainLength;
    }

}


public class LongestIncreasingSubsequenceLinkedList {


    private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
        ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
        ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
        for(int i=0;i<size;i++){
            int currValue=arr[i];
            if(valuePairs.size()==0){
                LinkedList<Integer> aList=new LinkedList<>();
                aList.add(arr[i]);
                seqList.add(aList);
                valuePairs.add(new ChainHighestValue(arr[i],1));

            }else{
                try{
                    ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
                    int index=valuePairs.indexOf(heighestIndex);
                    seqList.get(index).add(arr[i]);
                    heighestIndex.highestValue=arr[i];
                    heighestIndex.chainLength+=1;

                }catch (Exception e){
                    LinkedList<Integer> aList=new LinkedList<>();
                    aList.add(arr[i]);
                    seqList.add(aList);
                    valuePairs.add(new ChainHighestValue(arr[i],1));
                }
            }
        }
        ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
        int index=valuePairs.indexOf(heighestIndex);
        return seqList.get(index);
    }

    public static void main(String[] args){
        int arry[]={5,1,3,6,11,30,32,5,3,73,79};
        //int arryB[]={3,1,5,2,6,4,9};
        LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
        System.out.println("Longest Incrementing Subsequence:");
        for(Integer a: LIS){
            System.out.print(a+" ");
        }

    }
}
Atique Reza
fonte
0

Eu implementei o LIS em java usando programação dinâmica e memorização. Junto com o código, fiz o cálculo da complexidade, ou seja, por que é O (n Log (base2) n). Na minha opinião, explicações teóricas ou lógicas são boas, mas a demonstração prática é sempre melhor para a compreensão.

package com.company.dynamicProgramming;

import java.util.HashMap;
import java.util.Map;

public class LongestIncreasingSequence {

    static int complexity = 0;

    public static void main(String ...args){


        int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
        int n = arr.length;

        Map<Integer, Integer> memo = new HashMap<>();

        lis(arr, n, memo);

        //Display Code Begins
        int x = 0;
        System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
        for(Map.Entry e : memo.entrySet()){

            if((Integer)e.getValue() > x){
                System.out.print(arr[(Integer)e.getKey()-1] + " ");
                x++;
            }
        }
        System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
        System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
        //Display Code Ends

    }



    static int lis(int[] arr, int n, Map<Integer, Integer> memo){

        if(n==1){
            memo.put(1, 1);
            return 1;
        }

        int lisAti;
        int lisAtn = 1;

        for(int i = 1; i < n; i++){
            complexity++;

            if(memo.get(i)!=null){
                lisAti = memo.get(i);
            }else {
                lisAti = lis(arr, i, memo);
            }

            if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
                lisAtn = lisAti +1;
            }
        }

        memo.put(n, lisAtn);
        return lisAtn;

    }
}

Enquanto eu corria o código acima -

Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80 
And Time Complexity for Array size 9 is just 36 
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0

atul sachan
fonte
Dá resposta incorreta para a entrada: {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};
ahadcse 21/04