- O que é pivô?
- Como eu giro?
- Isso é um pivô?
- Formato longo para formato amplo?
Eu já vi muitas perguntas sobre tabelas dinâmicas. Mesmo que eles não saibam que estão perguntando sobre tabelas dinâmicas, geralmente o são. É praticamente impossível escrever uma pergunta e resposta canônica que abranja todos os aspectos da rotação.
... Mas eu vou tentar.
O problema com as perguntas e respostas existentes é que, muitas vezes, a pergunta é focada em uma nuance que o OP tem dificuldade em generalizar para usar várias das boas respostas existentes. No entanto, nenhuma das respostas tenta dar uma explicação abrangente (porque é uma tarefa assustadora)
Veja alguns exemplos da minha pesquisa no google
- Como dinamizar um dataframe no Pandas?
- Boa pergunta e resposta. Mas a resposta responde apenas à pergunta específica com poucas explicações.
- tabela dinâmica pandas para quadro de dados
- Nesta questão, o PO está preocupado com a saída do pivô. Ou seja, a aparência das colunas. O OP queria que parecesse R. Isso não é muito útil para usuários de pandas.
- pandas girando um quadro de dados, linhas duplicadas
- Outra pergunta decente, mas a resposta se concentra em um método, a saber
pd.DataFrame.pivot
- Outra pergunta decente, mas a resposta se concentra em um método, a saber
Portanto, sempre que alguém procura pivot
, obtém resultados esporádicos que provavelmente não responderão a perguntas específicas.
Configuração
Você pode notar que nomeei minhas colunas e os valores relevantes das colunas para corresponder à forma como vou articular as respostas abaixo.
import numpy as np
import pandas as pd
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(
add(cols, arr1), columns=cols
).join(
pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
5 key1 row2 item2 col4 0.13 0.88
6 key2 row4 item1 col3 0.88 0.39
7 key1 row4 item1 col1 0.10 0.07
8 key1 row0 item2 col4 0.65 0.02
9 key1 row2 item0 col2 0.35 0.61
10 key2 row0 item2 col1 0.40 0.85
11 key2 row4 item1 col2 0.64 0.25
12 key0 row2 item2 col3 0.50 0.44
13 key0 row4 item1 col4 0.24 0.46
14 key1 row3 item2 col3 0.28 0.11
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
Questões)
Por que eu recebo
ValueError: Index contains duplicate entries, cannot reshape
Como faço a rotação de
df
forma que oscol
valores sejam colunas, osrow
valores sejam o índice e a média deval0
sejam os valores?col col0 col1 col2 col3 col4 row row0 0.77 0.605 NaN 0.860 0.65 row2 0.13 NaN 0.395 0.500 0.25 row3 NaN 0.310 NaN 0.545 NaN row4 NaN 0.100 0.395 0.760 0.24
Como faço a rotação para
df
que oscol
valores sejam colunas, osrow
valores sejam o índice, a média deval0
sejam os valores e os valores ausentes0
?col col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.100 0.395 0.760 0.24
Posso conseguir algo diferente
mean
, como talvezsum
?col col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 row2 0.13 0.00 0.79 0.50 0.50 row3 0.00 0.31 0.00 1.09 0.00 row4 0.00 0.10 0.79 1.52 0.24
Posso fazer mais de uma agregação por vez?
sum mean col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.00 0.79 0.50 0.50 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.31 0.00 1.09 0.00 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.10 0.79 1.52 0.24 0.00 0.100 0.395 0.760 0.24
Posso agregar várias colunas de valor?
val0 val1 col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02 row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79 row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00 row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
Pode subdividir por várias colunas?
item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 row row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65 row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00 row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
Ou
item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 key row key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00 row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65 row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13 row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
Posso agregar a frequência em que a coluna e as linhas ocorrem juntas, também conhecida como "tabulação cruzada"?
col col0 col1 col2 col3 col4 row row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1
Como converter um DataFrame de longo para amplo, girando apenas em duas colunas? Dado,
np.random.seed([3, 1415]) df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)}) df2 A B 0 a 0 1 a 11 2 a 2 3 a 11 4 b 10 5 b 10 6 b 14 7 c 7
O esperado deveria parecer algo como
a b c 0 0.0 10.0 7.0 1 11.0 10.0 NaN 2 2.0 14.0 NaN 3 11.0 NaN NaN
Como aplainar o índice múltiplo ao único índice após
pivot
De
1 2 1 1 2 a 2 1 1 b 2 1 0 c 1 0 0
Para
1|1 2|1 2|2 a 2 1 1 b 2 1 0 c 1 0 0
KeyError: 'A'
. Existe mais para a resposta?'A'
supõe-se que exista uma coluna'A'
no seu quadro de dados para agrupar.Para estender a resposta do @ piRSquared, outra versão da Questão 10
Pergunta 10.1
Quadro de dados:
Resultado:
Usando
df.groupby
epd.Series.tolist
Ou Uma alternativa muito melhor usando
pd.pivot_table
comdf.squeeze.
fonte