Melhor maneira de representar uma fração em Java?

100

Estou tentando trabalhar com frações em Java.

Eu quero implementar funções aritméticas. Para isso, primeiro exigirei uma maneira de normalizar as funções. Eu sei que não posso somar 1/6 e 1/2 até que tenha um denominador comum. Terei que adicionar 1/6 e 3/6. Uma abordagem ingênua me faria adicionar 2/12 e 6/12 e depois reduzir. Como posso alcançar um denominador comum com a menor penalidade de desempenho? Qual algoritmo é melhor para isso?


Versão 8 (graças a hstoerr ):

As melhorias incluem:

  • o método equals () agora é consistente com o método compareTo ()
final class Fraction extends Number {
    private int numerator;
    private int denominator;

    public Fraction(int numerator, int denominator) {
        if(denominator == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if(denominator < 0) {
            numerator *= -1;
            denominator *= -1;
        }
        this.numerator = numerator;
        this.denominator = denominator;
    }

    public Fraction(int numerator) {
        this.numerator = numerator;
        this.denominator = 1;
    }

    public int getNumerator() {
        return this.numerator;
    }

    public int getDenominator() {
        return this.denominator;
    }

    public byte byteValue() {
        return (byte) this.doubleValue();
    }

    public double doubleValue() {
        return ((double) numerator)/((double) denominator);
    }

    public float floatValue() {
        return (float) this.doubleValue();
    }

    public int intValue() {
        return (int) this.doubleValue();
    }

    public long longValue() {
        return (long) this.doubleValue();
    }

    public short shortValue() {
        return (short) this.doubleValue();
    }

    public boolean equals(Fraction frac) {
        return this.compareTo(frac) == 0;
    }

    public int compareTo(Fraction frac) {
        long t = this.getNumerator() * frac.getDenominator();
        long f = frac.getNumerator() * this.getDenominator();
        int result = 0;
        if(t>f) {
            result = 1;
        }
        else if(f>t) {
            result = -1;
        }
        return result;
    }
}

Eu removi todas as versões anteriores. Meus agradecimentos a:

1181
fonte
33
Jogue fora o código, use o Apache Commons :) commons.apache.org/math/userguide/fraction.html
Patrick
3
O comentário de Patrick mereceria +1, se tivesse sido postado como resposta. Na maioria dos casos, essa é a resposta certa; “conhecer e usar as bibliotecas”, como diz Effective Java. A pergunta original é clara e útil também.
Jonik
Percebi que você aceitou minha resposta .. se você estiver realmente usando esse código e encontrar algum problema com ele ou qualquer coisa que esteja faltando, por favor me avise! envie-me um e-mail do meu site: vacant-nebula.com/contact/kip
Kip
Eu sugiro que você edite seu método "compareTo" e converta "this.getNumerator ()" para muito antes da multiplicação. Caso contrário, o código ainda está sujeito a transbordar. Também acho que seria bom implementar Comparable <Fraction>, uma vez que você já implementou o método compareTo.
Hosam Aly
E já que você foi tão longe, pode ser útil implementar equals e hashCode também.
Hosam Aly

Respostas:

65

Acontece que escrevi uma classe BigFraction não muito tempo atrás, para problemas do Projeto Euler . Ele mantém um numerador e denominador BigInteger, para que nunca transborde. Mas vai ser um pouco lento para muitas operações que você sabe que nunca irão transbordar ... de qualquer maneira, use-o se quiser. Estou morrendo de vontade de mostrar isso de alguma forma. :)

Edit : a versão mais recente e melhor deste código, incluindo testes de unidade, agora está hospedada no GitHub e também disponível via Maven Central . Estou deixando meu código original aqui para que esta resposta não seja apenas um link ...


import java.math.*;

/**
 * Arbitrary-precision fractions, utilizing BigIntegers for numerator and
 * denominator.  Fraction is always kept in lowest terms.  Fraction is
 * immutable, and guaranteed not to have a null numerator or denominator.
 * Denominator will always be positive (so sign is carried by numerator,
 * and a zero-denominator is impossible).
 */
public final class BigFraction extends Number implements Comparable<BigFraction>
{
  private static final long serialVersionUID = 1L; //because Number is Serializable
  private final BigInteger numerator;
  private final BigInteger denominator;

  public final static BigFraction ZERO = new BigFraction(BigInteger.ZERO, BigInteger.ONE, true);
  public final static BigFraction ONE = new BigFraction(BigInteger.ONE, BigInteger.ONE, true);

  /**
   * Constructs a BigFraction with given numerator and denominator.  Fraction
   * will be reduced to lowest terms.  If fraction is negative, negative sign will
   * be carried on numerator, regardless of how the values were passed in.
   */
  public BigFraction(BigInteger numerator, BigInteger denominator)
  {
    if(numerator == null)
      throw new IllegalArgumentException("Numerator is null");
    if(denominator == null)
      throw new IllegalArgumentException("Denominator is null");
    if(denominator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero.");

    //only numerator should be negative.
    if(denominator.signum() < 0)
    {
      numerator = numerator.negate();
      denominator = denominator.negate();
    }

    //create a reduced fraction
    BigInteger gcd = numerator.gcd(denominator);
    this.numerator = numerator.divide(gcd);
    this.denominator = denominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from a whole number.
   */
  public BigFraction(BigInteger numerator)
  {
    this(numerator, BigInteger.ONE, true);
  }

  public BigFraction(long numerator, long denominator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator));
  }

  public BigFraction(long numerator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.ONE, true);
  }

  /**
   * Constructs a BigFraction from a floating-point number.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  For example, 
   *     System.out.println(new BigFraction(1.1))
   * will print:
   *     2476979795053773/2251799813685248
   * 
   * This is because 1.1 cannot be expressed exactly in binary form.  The
   * given fraction is exactly equal to the internal representation of
   * the double-precision floating-point number.  (Which, for 1.1, is:
   * (-1)^0 * 2^0 * (1 + 0x199999999999aL / 0x10000000000000L).)
   * 
   * NOTE: In many cases, BigFraction(Double.toString(d)) may give a result
   * closer to what the user expects.
   */
  public BigFraction(double d)
  {
    if(Double.isInfinite(d))
      throw new IllegalArgumentException("double val is infinite");
    if(Double.isNaN(d))
      throw new IllegalArgumentException("double val is NaN");

    //special case - math below won't work right for 0.0 or -0.0
    if(d == 0)
    {
      numerator = BigInteger.ZERO;
      denominator = BigInteger.ONE;
      return;
    }

    final long bits = Double.doubleToLongBits(d);
    final int sign = (int)(bits >> 63) & 0x1;
    final int exponent = ((int)(bits >> 52) & 0x7ff) - 0x3ff;
    final long mantissa = bits & 0xfffffffffffffL;

    //number is (-1)^sign * 2^(exponent) * 1.mantissa
    BigInteger tmpNumerator = BigInteger.valueOf(sign==0 ? 1 : -1);
    BigInteger tmpDenominator = BigInteger.ONE;

    //use shortcut: 2^x == 1 << x.  if x is negative, shift the denominator
    if(exponent >= 0)
      tmpNumerator = tmpNumerator.multiply(BigInteger.ONE.shiftLeft(exponent));
    else
      tmpDenominator = tmpDenominator.multiply(BigInteger.ONE.shiftLeft(-exponent));

    //1.mantissa == 1 + mantissa/2^52 == (2^52 + mantissa)/2^52
    tmpDenominator = tmpDenominator.multiply(BigInteger.valueOf(0x10000000000000L));
    tmpNumerator = tmpNumerator.multiply(BigInteger.valueOf(0x10000000000000L + mantissa));

    BigInteger gcd = tmpNumerator.gcd(tmpDenominator);
    numerator = tmpNumerator.divide(gcd);
    denominator = tmpDenominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from two floating-point numbers.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  See BigFraction(double) for more
   * information.
   * 
   * NOTE: In many cases, BigFraction(Double.toString(numerator) + "/" + Double.toString(denominator))
   * may give a result closer to what the user expects.
   */
  public BigFraction(double numerator, double denominator)
  {
    if(denominator == 0)
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a new BigFraction from the given BigDecimal object.
   */
  public BigFraction(BigDecimal d)
  {
    this(d.scale() < 0 ? d.unscaledValue().multiply(BigInteger.TEN.pow(-d.scale())) : d.unscaledValue(),
         d.scale() < 0 ? BigInteger.ONE                                             : BigInteger.TEN.pow(d.scale()));
  }

  public BigFraction(BigDecimal numerator, BigDecimal denominator)
  {
    if(denominator.equals(BigDecimal.ZERO))
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a BigFraction from a String.  Expected format is numerator/denominator,
   * but /denominator part is optional.  Either numerator or denominator may be a floating-
   * point decimal number, which in the same format as a parameter to the
   * <code>BigDecimal(String)</code> constructor.
   * 
   * @throws NumberFormatException  if the string cannot be properly parsed.
   */
  public BigFraction(String s)
  {
    int slashPos = s.indexOf('/');
    if(slashPos < 0)
    {
      BigFraction res = new BigFraction(new BigDecimal(s));
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
    else
    {
      BigDecimal num = new BigDecimal(s.substring(0, slashPos));
      BigDecimal den = new BigDecimal(s.substring(slashPos+1, s.length()));
      BigFraction res = new BigFraction(num, den);
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
  }

  /**
   * Returns this + f.
   */
  public BigFraction add(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2/d2 = (n1*d2 + d1*n2)/(d1*d2) 
    return new BigFraction(numerator.multiply(f.denominator).add(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this + b.
   */
  public BigFraction add(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2 = (n1 + d1*n2)/d1
    return new BigFraction(numerator.add(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this + n.
   */
  public BigFraction add(long n)
  {
    return add(BigInteger.valueOf(n));
  }

  /**
   * Returns this - f.
   */
  public BigFraction subtract(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.denominator).subtract(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this - b.
   */
  public BigFraction subtract(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.subtract(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this - n.
   */
  public BigFraction subtract(long n)
  {
    return subtract(BigInteger.valueOf(n));
  }

  /**
   * Returns this * f.
   */
  public BigFraction multiply(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.numerator), denominator.multiply(f.denominator));
  }

  /**
   * Returns this * b.
   */
  public BigFraction multiply(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(b), denominator);
  }

  /**
   * Returns this * n.
   */
  public BigFraction multiply(long n)
  {
    return multiply(BigInteger.valueOf(n));
  }

  /**
   * Returns this / f.
   */
  public BigFraction divide(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    if(f.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator.multiply(f.denominator), denominator.multiply(f.numerator));
  }

  /**
   * Returns this / b.
   */
  public BigFraction divide(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    if(b.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator, denominator.multiply(b));
  }

  /**
   * Returns this / n.
   */
  public BigFraction divide(long n)
  {
    return divide(BigInteger.valueOf(n));
  }

  /**
   * Returns this^exponent.
   */
  public BigFraction pow(int exponent)
  {
    if(exponent == 0)
      return BigFraction.ONE;
    else if (exponent == 1)
      return this;
    else if (exponent < 0)
      return new BigFraction(denominator.pow(-exponent), numerator.pow(-exponent), true);
    else
      return new BigFraction(numerator.pow(exponent), denominator.pow(exponent), true);
  }

  /**
   * Returns 1/this.
   */
  public BigFraction reciprocal()
  {
    if(this.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(denominator, numerator, true);
  }

  /**
   * Returns the complement of this fraction, which is equal to 1 - this.
   * Useful for probabilities/statistics.

   */
  public BigFraction complement()
  {
    return new BigFraction(denominator.subtract(numerator), denominator, true);
  }

  /**
   * Returns -this.
   */
  public BigFraction negate()
  {
    return new BigFraction(numerator.negate(), denominator, true);
  }

  /**
   * Returns -1, 0, or 1, representing the sign of this fraction.
   */
  public int signum()
  {
    return numerator.signum();
  }

  /**
   * Returns the absolute value of this.
   */
  public BigFraction abs()
  {
    return (signum() < 0 ? negate() : this);
  }

  /**
   * Returns a string representation of this, in the form
   * numerator/denominator.
   */
  public String toString()
  {
    return numerator.toString() + "/" + denominator.toString();
  }

  /**
   * Returns if this object is equal to another object.
   */
  public boolean equals(Object o)
  {
    if(!(o instanceof BigFraction))
      return false;

    BigFraction f = (BigFraction)o;
    return numerator.equals(f.numerator) && denominator.equals(f.denominator);
  }

  /**
   * Returns a hash code for this object.
   */
  public int hashCode()
  {
    //using the method generated by Eclipse, but streamlined a bit..
    return (31 + numerator.hashCode())*31 + denominator.hashCode();
  }

  /**
   * Returns a negative, zero, or positive number, indicating if this object
   * is less than, equal to, or greater than f, respectively.
   */
  public int compareTo(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //easy case: this and f have different signs
    if(signum() != f.signum())
      return signum() - f.signum();

    //next easy case: this and f have the same denominator
    if(denominator.equals(f.denominator))
      return numerator.compareTo(f.numerator);

    //not an easy case, so first make the denominators equal then compare the numerators 
    return numerator.multiply(f.denominator).compareTo(denominator.multiply(f.numerator));
  }

  /**
   * Returns the smaller of this and f.
   */
  public BigFraction min(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) <= 0 ? this : f);
  }

  /**
   * Returns the maximum of this and f.
   */
  public BigFraction max(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) >= 0 ? this : f);
  }

  /**
   * Returns a positive BigFraction, greater than or equal to zero, and less than one.
   */
  public static BigFraction random()
  {
    return new BigFraction(Math.random());
  }

  public final BigInteger getNumerator() { return numerator; }
  public final BigInteger getDenominator() { return denominator; }

  //implementation of Number class.  may cause overflow.
  public byte   byteValue()   { return (byte) Math.max(Byte.MIN_VALUE,    Math.min(Byte.MAX_VALUE,    longValue())); }
  public short  shortValue()  { return (short)Math.max(Short.MIN_VALUE,   Math.min(Short.MAX_VALUE,   longValue())); }
  public int    intValue()    { return (int)  Math.max(Integer.MIN_VALUE, Math.min(Integer.MAX_VALUE, longValue())); }
  public long   longValue()   { return Math.round(doubleValue()); }
  public float  floatValue()  { return (float)doubleValue(); }
  public double doubleValue() { return toBigDecimal(18).doubleValue(); }

  /**
   * Returns a BigDecimal representation of this fraction.  If possible, the
   * returned value will be exactly equal to the fraction.  If not, the BigDecimal
   * will have a scale large enough to hold the same number of significant figures
   * as both numerator and denominator, or the equivalent of a double-precision
   * number, whichever is more.
   */
  public BigDecimal toBigDecimal()
  {
    //Implementation note:  A fraction can be represented exactly in base-10 iff its
    //denominator is of the form 2^a * 5^b, where a and b are nonnegative integers.
    //(In other words, if there are no prime factors of the denominator except for
    //2 and 5, or if the denominator is 1).  So to determine if this denominator is
    //of this form, continually divide by 2 to get the number of 2's, and then
    //continually divide by 5 to get the number of 5's.  Afterward, if the denominator
    //is 1 then there are no other prime factors.

    //Note: number of 2's is given by the number of trailing 0 bits in the number
    int twos = denominator.getLowestSetBit();
    BigInteger tmpDen = denominator.shiftRight(twos); // x / 2^n === x >> n

    final BigInteger FIVE = BigInteger.valueOf(5);
    int fives = 0;
    BigInteger[] divMod = null;

    //while(tmpDen % 5 == 0) { fives++; tmpDen /= 5; }
    while(BigInteger.ZERO.equals((divMod = tmpDen.divideAndRemainder(FIVE))[1]))
    {
      fives++;
      tmpDen = divMod[0];
    }

    if(BigInteger.ONE.equals(tmpDen))
    {
      //This fraction will terminate in base 10, so it can be represented exactly as
      //a BigDecimal.  We would now like to make the fraction of the form
      //unscaled / 10^scale.  We know that 2^x * 5^x = 10^x, and our denominator is
      //in the form 2^twos * 5^fives.  So use max(twos, fives) as the scale, and
      //multiply the numerator and deminator by the appropriate number of 2's or 5's
      //such that the denominator is of the form 2^scale * 5^scale.  (Of course, we
      //only have to actually multiply the numerator, since all we need for the
      //BigDecimal constructor is the scale.
      BigInteger unscaled = numerator;
      int scale = Math.max(twos, fives);

      if(twos < fives)
        unscaled = unscaled.shiftLeft(fives - twos); //x * 2^n === x << n
      else if (fives < twos)
        unscaled = unscaled.multiply(FIVE.pow(twos - fives));

      return new BigDecimal(unscaled, scale);
    }

    //else: this number will repeat infinitely in base-10.  So try to figure out
    //a good number of significant digits.  Start with the number of digits required
    //to represent the numerator and denominator in base-10, which is given by
    //bitLength / log[2](10).  (bitLenth is the number of digits in base-2).
    final double LG10 = 3.321928094887362; //Precomputed ln(10)/ln(2), a.k.a. log[2](10)
    int precision = Math.max(numerator.bitLength(), denominator.bitLength());
    precision = (int)Math.ceil(precision / LG10);

    //If the precision is less than 18 digits, use 18 digits so that the number
    //will be at least as accurate as a cast to a double.  For example, with
    //the fraction 1/3, precision will be 1, giving a result of 0.3.  This is
    //quite a bit different from what a user would expect.
    if(precision < 18)
      precision = 18;

    return toBigDecimal(precision);
  }

  /**
   * Returns a BigDecimal representation of this fraction, with a given precision.
   * @param precision  the number of significant figures to be used in the result.
   */
  public BigDecimal toBigDecimal(int precision)
  {
    return new BigDecimal(numerator).divide(new BigDecimal(denominator), new MathContext(precision, RoundingMode.HALF_EVEN));
  }

  //--------------------------------------------------------------------------
  //  PRIVATE FUNCTIONS
  //--------------------------------------------------------------------------

  /**
   * Private constructor, used when you can be certain that the fraction is already in
   * lowest terms.  No check is done to reduce numerator/denominator.  A check is still
   * done to maintain a positive denominator.
   * 
   * @param throwaway  unused variable, only here to signal to the compiler that this
   *                   constructor should be used.
   */
  private BigFraction(BigInteger numerator, BigInteger denominator, boolean throwaway)
  {
    if(denominator.signum() < 0)
    {
      this.numerator = numerator.negate();
      this.denominator = denominator.negate();
    }
    else
    {
      this.numerator = numerator;
      this.denominator = denominator;
    }
  }

}
Kip
fonte
Se um arg for nulo, lance um NullPointerException. Na verdade, o código fará isso de qualquer maneira, então sua verificação (e substituição por IllegalArgumentException (é um inchaço de código desnecessário.
cletus
24
Discordo; se outro usuário estivesse usando esta classe sem olhar para o meu código-fonte e obtivesse uma NullPointerException, ele pensaria que havia um bug no meu código. Mas uma IllegalArgumentException mostra que ele quebrou o contrato implícito pelo javadoc (embora eu não tenha declarado explicitamente).
Kip
1
apenas uma pergunta, o que há de errado com Fração e BigFraction no Commons Math?
Mortimer
@Mortimer: não tenho certeza, nunca olhei para ele
Kip
61
  • Torne-o imutável ;
  • Torne-o canônico , o que significa que 6/4 se torna 3/2 (o algoritmo do maior divisor comum é útil para isso);
  • Chame-o de Racional, pois o que você está representando é um número racional ;
  • Você pode usar BigIntegerpara armazenar valores arbitrariamente precisos. Se não long, então , que tem uma implementação mais fácil;
  • Faça o denominador sempre positivo. O sinal deve ser carregado pelo numerador;
  • Estender Number;
  • Implementar Comparable<T>;
  • Implementar equals()e hashCode();
  • Adicione o método de fábrica para um número representado por um String;
  • Adicione alguns métodos de fábrica de conveniência;
  • Adicione um toString(); e
  • Faça isso Serializable.

Na verdade, experimente isso para ver o tamanho. Ele funciona, mas pode ter alguns problemas:

public class BigRational extends Number implements Comparable<BigRational>, Serializable {
    public final static BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    private final static long serialVersionUID = 1099377265582986378L;

    private final BigInteger numerator, denominator;

    private BigRational(BigInteger numerator, BigInteger denominator) {
        this.numerator = numerator;
        this.denominator = denominator;
    }

    private static BigRational canonical(BigInteger numerator, BigInteger denominator, boolean checkGcd) {
        if (denominator.signum() == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if (numerator.signum() == 0) {
            return ZERO;
        }
        if (denominator.signum() < 0) {
            numerator = numerator.negate();
            denominator = denominator.negate();
        }
        if (checkGcd) {
            BigInteger gcd = numerator.gcd(denominator);
            if (!gcd.equals(BigInteger.ONE)) {
                numerator = numerator.divide(gcd);
                denominator = denominator.divide(gcd);
            }
        }
        return new BigRational(numerator, denominator);
    }

    public static BigRational getInstance(BigInteger numerator, BigInteger denominator) {
        return canonical(numerator, denominator, true);
    }

    public static BigRational getInstance(long numerator, long denominator) {
        return canonical(new BigInteger("" + numerator), new BigInteger("" + denominator), true);
    }

    public static BigRational getInstance(String numerator, String denominator) {
        return canonical(new BigInteger(numerator), new BigInteger(denominator), true);
    }

    public static BigRational valueOf(String s) {
        Pattern p = Pattern.compile("(-?\\d+)(?:.(\\d+)?)?0*(?:e(-?\\d+))?");
        Matcher m = p.matcher(s);
        if (!m.matches()) {
            throw new IllegalArgumentException("Unknown format '" + s + "'");
        }

        // this translates 23.123e5 to 25,123 / 1000 * 10^5 = 2,512,300 / 1 (GCD)
        String whole = m.group(1);
        String decimal = m.group(2);
        String exponent = m.group(3);
        String n = whole;

        // 23.123 => 23123
        if (decimal != null) {
            n += decimal;
        }
        BigInteger numerator = new BigInteger(n);

        // exponent is an int because BigInteger.pow() takes an int argument
        // it gets more difficult if exponent needs to be outside {-2 billion,2 billion}
        int exp = exponent == null ? 0 : Integer.valueOf(exponent);
        int decimalPlaces = decimal == null ? 0 : decimal.length();
        exp -= decimalPlaces;
        BigInteger denominator;
        if (exp < 0) {
            denominator = BigInteger.TEN.pow(-exp);
        } else {
            numerator = numerator.multiply(BigInteger.TEN.pow(exp));
            denominator = BigInteger.ONE;
        }

        // done
        return canonical(numerator, denominator, true);
    }

    // Comparable
    public int compareTo(BigRational o) {
        // note: this is a bit of cheat, relying on BigInteger.compareTo() returning
        // -1, 0 or 1.  For the more general contract of compareTo(), you'd need to do
        // more checking
        if (numerator.signum() != o.numerator.signum()) {
            return numerator.signum() - o.numerator.signum();
        } else {
            // oddly BigInteger has gcd() but no lcm()
            BigInteger i1 = numerator.multiply(o.denominator);
            BigInteger i2 = o.numerator.multiply(denominator);
            return i1.compareTo(i2); // expensive!
        }
    }

    public BigRational add(BigRational o) {
        if (o.numerator.signum() == 0) {
            return this;
        } else if (numerator.signum() == 0) {
            return o;
        } else if (denominator.equals(o.denominator)) {
            return new BigRational(numerator.add(o.numerator), denominator);
        } else {
            return canonical(numerator.multiply(o.denominator).add(o.numerator.multiply(denominator)), denominator.multiply(o.denominator), true);
        }
    }


    public BigRational multiply(BigRational o) {
        if (numerator.signum() == 0 || o.numerator.signum( )== 0) {
            return ZERO;
        } else if (numerator.equals(o.denominator)) {
            return canonical(o.numerator, denominator, true);
        } else if (o.numerator.equals(denominator)) {
            return canonical(numerator, o.denominator, true);
        } else if (numerator.negate().equals(o.denominator)) {
            return canonical(o.numerator.negate(), denominator, true);
        } else if (o.numerator.negate().equals(denominator)) {
            return canonical(numerator.negate(), o.denominator, true);
        } else {
            return canonical(numerator.multiply(o.numerator), denominator.multiply(o.denominator), true);
        }
    }

    public BigInteger getNumerator() { return numerator; }
    public BigInteger getDenominator() { return denominator; }
    public boolean isInteger() { return numerator.signum() == 0 || denominator.equals(BigInteger.ONE); }
    public BigRational negate() { return new BigRational(numerator.negate(), denominator); }
    public BigRational invert() { return canonical(denominator, numerator, false); }
    public BigRational abs() { return numerator.signum() < 0 ? negate() : this; }
    public BigRational pow(int exp) { return canonical(numerator.pow(exp), denominator.pow(exp), true); }
    public BigRational subtract(BigRational o) { return add(o.negate()); }
    public BigRational divide(BigRational o) { return multiply(o.invert()); }
    public BigRational min(BigRational o) { return compareTo(o) <= 0 ? this : o; }
    public BigRational max(BigRational o) { return compareTo(o) >= 0 ? this : o; }

    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode) {
        return isInteger() ? new BigDecimal(numerator) : new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    // Number
    public int intValue() { return isInteger() ? numerator.intValue() : numerator.divide(denominator).intValue(); }
    public long longValue() { return isInteger() ? numerator.longValue() : numerator.divide(denominator).longValue(); }
    public float floatValue() { return (float)doubleValue(); }
    public double doubleValue() { return isInteger() ? numerator.doubleValue() : numerator.doubleValue() / denominator.doubleValue(); }

    @Override
    public String toString() { return isInteger() ? String.format("%,d", numerator) : String.format("%,d / %,d", numerator, denominator); }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        BigRational that = (BigRational) o;

        if (denominator != null ? !denominator.equals(that.denominator) : that.denominator != null) return false;
        if (numerator != null ? !numerator.equals(that.numerator) : that.numerator != null) return false;

        return true;
    }

    @Override
    public int hashCode() {
        int result = numerator != null ? numerator.hashCode() : 0;
        result = 31 * result + (denominator != null ? denominator.hashCode() : 0);
        return result;
    }

    public static void main(String args[]) {
        BigRational r1 = BigRational.valueOf("3.14e4");
        BigRational r2 = BigRational.getInstance(111, 7);
        dump("r1", r1);
        dump("r2", r2);
        dump("r1 + r2", r1.add(r2));
        dump("r1 - r2", r1.subtract(r2));
        dump("r1 * r2", r1.multiply(r2));
        dump("r1 / r2", r1.divide(r2));
        dump("r2 ^ 2", r2.pow(2));
    }

    public static void dump(String name, BigRational r) {
        System.out.printf("%s = %s%n", name, r);
        System.out.printf("%s.negate() = %s%n", name, r.negate());
        System.out.printf("%s.invert() = %s%n", name, r.invert());
        System.out.printf("%s.intValue() = %,d%n", name, r.intValue());
        System.out.printf("%s.longValue() = %,d%n", name, r.longValue());
        System.out.printf("%s.floatValue() = %,f%n", name, r.floatValue());
        System.out.printf("%s.doubleValue() = %,f%n", name, r.doubleValue());
        System.out.println();
    }
}

O resultado é:

r1 = 31,400
r1.negate() = -31,400
r1.invert() = 1 / 31,400
r1.intValue() = 31,400
r1.longValue() = 31,400
r1.floatValue() = 31,400.000000
r1.doubleValue() = 31,400.000000

r2 = 111 / 7
r2.negate() = -111 / 7
r2.invert() = 7 / 111
r2.intValue() = 15
r2.longValue() = 15
r2.floatValue() = 15.857142
r2.doubleValue() = 15.857143

r1 + r2 = 219,911 / 7
r1 + r2.negate() = -219,911 / 7
r1 + r2.invert() = 7 / 219,911
r1 + r2.intValue() = 31,415
r1 + r2.longValue() = 31,415
r1 + r2.floatValue() = 31,415.857422
r1 + r2.doubleValue() = 31,415.857143

r1 - r2 = 219,689 / 7
r1 - r2.negate() = -219,689 / 7
r1 - r2.invert() = 7 / 219,689
r1 - r2.intValue() = 31,384
r1 - r2.longValue() = 31,384
r1 - r2.floatValue() = 31,384.142578
r1 - r2.doubleValue() = 31,384.142857

r1 * r2 = 3,485,400 / 7
r1 * r2.negate() = -3,485,400 / 7
r1 * r2.invert() = 7 / 3,485,400
r1 * r2.intValue() = 497,914
r1 * r2.longValue() = 497,914
r1 * r2.floatValue() = 497,914.281250
r1 * r2.doubleValue() = 497,914.285714

r1 / r2 = 219,800 / 111
r1 / r2.negate() = -219,800 / 111
r1 / r2.invert() = 111 / 219,800
r1 / r2.intValue() = 1,980
r1 / r2.longValue() = 1,980
r1 / r2.floatValue() = 1,980.180176
r1 / r2.doubleValue() = 1,980.180180

r2 ^ 2 = 12,321 / 49
r2 ^ 2.negate() = -12,321 / 49
r2 ^ 2.invert() = 49 / 12,321
r2 ^ 2.intValue() = 251
r2 ^ 2.longValue() = 251
r2 ^ 2.floatValue() = 251.448975
r2 ^ 2.doubleValue() = 251.448980
cletus
fonte
30

Estou tentando trabalhar com frações adequadas em Java.

O Apache Commons Math teve uma classe de frações por algum tempo. Na maioria das vezes, a resposta para "Rapaz, eu gostaria que o Java tivesse algo como X na biblioteca principal!" pode ser encontrado sob a égide da biblioteca Apache Commons .

Yawmark
fonte
2
Vou lhe dizer por que isso é tão baixo, a biblioteca Apache Commons não é amigável para iniciantes. Primeiro não há link direto para download nessa página (está escondido no menu da barra lateral), segundo não há instruções de como usá-lo (adicionando um jar ao seu caminho de construção), terceiro eu recebi um erro classDefNotFound depois de adicionar tudo de qualquer maneira . Assim, você não recebe votos positivos de nós, que só sabemos copiar e colar.
Noumenon
@Noumenon que tal usar qualquer gerenciador de compilação (por exemplo, maven) e apenas adicionar dependência no POM?
eugene.polschikov
1
Eu gostaria de ver uma pequena sinopse de "Como usar isso em seu projeto" para os noobs. Essa sugestão poderia ir lá. Dito isso, descobri como fazer isso e usei em meu aplicativo de fábrica que exigia a exibição de frações de polegadas, e nunca voltei para dar seu voto positivo. Então, obrigado, aqui está atrasado.
Noumenon
Isso é um feedback justo. Aqui está o meu agradecimento tardio também! :)
yawmark
Este é muito fácil de usar.
Eric Wang
24

Por favor, torne-o um tipo imutável! O valor de uma fração não muda - a metade não se torna um terço, por exemplo. Em vez de setDenominator, você poderia ter withDenominator, que retorna uma nova fração com o mesmo numerador, mas o denominador especificado.

A vida é muito mais fácil com tipos imutáveis.

Substituir equals e hashcode também seria sensato, portanto, pode ser usado em mapas e conjuntos. Os pontos do Outlaw Programmer sobre operadores aritméticos e formatação de strings também são bons.

Como um guia geral, dê uma olhada em BigInteger e BigDecimal. Eles não estão fazendo a mesma coisa, mas são semelhantes o suficiente para lhe dar boas ideias.

Jon Skeet
fonte
5
"Por favor, torne-o um tipo imutável! O valor de uma fração não muda - a metade não se torna um terço, por exemplo." Nem a lista / tupla / vetor (1, 2, 3, 4) se torna o valor (4, 3, 2, 1), mas não parece incomodar a maioria das pessoas que as listas mudam de estado. Não que eu não concorde com a imutabilidade das frações, mas ela merece um argumento melhor. Parece mais um valor do que um pacote de estado. A expectativa do programador é a razão certa para se guiar? Não tenho 100% de certeza, mas parece uma boa ideia.
Jonas Kölker
2
Bem, na vida real listas fazer a mudança: como você escrever uma lista de compras? Você começa com um pedaço de papel em branco e escreve nele. No meio do caminho, você ainda a chamaria de "lista de compras". Dito isso, a programação funcional se esforça para tornar as listas pares imutáveis ​​...
Jon Skeet
7

Bem, por um lado, eu me livraria dos setters e tornaria Frações imutáveis.

Você provavelmente também desejará métodos para adicionar, subtrair, etc., e talvez alguma forma de obter a representação em vários formatos de String.

EDITAR: provavelmente, marcaria os campos como 'finais' para sinalizar minha intenção, mas acho que não é grande coisa ...

Programador Outlaw
fonte
2
Eu me pergunto com quantas respostas "torná-lo imutável" vamos acabar com :)
Jon Skeet
5
  • É meio inútil sem métodos aritméticos como add () e multiply (), etc.
  • Você definitivamente deve substituir equals () e hashCode ().
  • Você deve adicionar um método para normalizar a fração ou fazê-lo automaticamente. Pense se você deseja que 1/2 e 2/4 sejam considerados iguais ou não - isso tem implicações para os métodos equals (), hashCode () e compareTo ().
Michael Borgwardt
fonte
5

Vou precisar ordená-los do menor para o maior, então, eventualmente, terei de representá-los como um duplo

Não é estritamente necessário. (Na verdade, se você quiser lidar com a igualdade corretamente, não confie no double para funcionar corretamente.) Se b * d for positivo, a / b <c / d se ad <bc. Se houver números inteiros negativos envolvidos, isso pode ser tratado adequadamente ...

Posso reescrever como:

public int compareTo(Fraction frac)
{
    // we are comparing this=a/b with frac=c/d 
    // by multiplying both sides by bd.
    // If bd is positive, then a/b < c/d <=> ad < bc.
    // If bd is negative, then a/b < c/d <=> ad > bc.
    // If bd is 0, then you've got other problems (either b=0 or d=0)
    int d = frac.getDenominator();
    long ad = (long)this.numerator * d;
    long bc = (long)this.denominator * frac.getNumerator();
    long diff = ((long)d*this.denominator > 0) ? (ad-bc) : (bc-ad);
    return (diff > 0 ? 1 : (diff < 0 ? -1 : 0));
}

O uso de longaqui é para garantir que não haja um estouro se você multiplicar dois ints grandes . handle Se você pode garantir que o denominador é sempre não negativo (se for negativo, apenas negue o numerador e o denominador), então você pode se livrar de ter que verificar se b * d é positivo e salvar alguns passos. Não tenho certeza de qual comportamento você está procurando com denominador zero.

Não tenho certeza de como o desempenho se compara ao uso de duplos para comparar. (isto é, se você se preocupa tanto com o desempenho) Aqui está um método de teste que usei para verificar. (Parece funcionar corretamente.)

public static void main(String[] args)
{
    int a = Integer.parseInt(args[0]);
    int b = Integer.parseInt(args[1]);
    int c = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    Fraction f1 = new Fraction(a,b); 
    Fraction f2 = new Fraction(c,d);
    int rel = f1.compareTo(f2);
    String relstr = "<=>";
    System.out.println(a+"/"+b+" "+relstr.charAt(rel+1)+" "+c+"/"+d);
}

(ps você pode considerar a reestruturação para implementar Comparableou Comparatorpara sua classe.)

Jason S
fonte
Isso não é verdade se, por exemplo, a = 1, b = 3, c = -2, d = -3. Se b e d forem positivos, então é verdade que a / b <c / d se e somente se ad <bc.
Luke Woodward
Argh, eu entendi a qualificação errada. (obrigado!) A condição deve ser se bd> 0.
Jason S
Verdade. Mais precisamente, a / b <c / d <=> ac <bd é verdadeiro desde que bd> 0. Se bd <0, o inverso é verdadeiro. (Se bd = 0, então você tem uma fração de bum. :-))
Paul Brinkley
Perto. você quer dizer a / b <c / d <=> ad <bc for bd> 0. (Eu acertei da primeira vez em meus comentários de código!)
Jason S
4

Uma melhoria muito pequena poderia ser potencialmente salvar o valor duplo que você está computando para que você o calcule apenas no primeiro acesso. Não será uma grande vitória a menos que você acesse muito esse número, mas também não é muito difícil de fazer.

Um ponto adicional pode ser a verificação de erro que você faz no denominador ... você muda automaticamente de 0 para 1. Não tenho certeza se isso é correto para sua aplicação em particular, mas em geral se alguém está tentando dividir por 0, algo está muito errado . Eu deixaria isso lançar uma exceção (uma exceção especializada se você achar que é necessário) em vez de alterar o valor de uma forma aparentemente arbitrária que não seja conhecida pelo usuário.

Em contraste com alguns outros comentários, sobre adicionar métodos para adicionar subtrair, etc ... já que você não mencionou a necessidade deles, estou assumindo que não. E a menos que você esteja construindo uma biblioteca que realmente será usada em muitos lugares ou por outras pessoas, vá com YAGNI (você não vai precisar dela, então ela não deveria estar lá).

Beska
fonte
O fato de ele ter getNumerator () e getDenominator () me levou a acreditar que ele estava criando novas frações FORA desta classe. Essa lógica provavelmente pertence aqui, se existir.
Outlaw Programmer
+1 Mudar silenciosamente de 0 para 1 no denominador é uma receita para o desastre.
maaartinus
4

Existem várias maneiras de melhorar este ou qualquer tipo de valor:

  • Torne sua aula imutável , incluindo numerador e denominador final
  • Converter automaticamente frações em uma forma canônica , por exemplo, 2/4 -> 1/2
  • Implementar toString ()
  • Implemente "public static Fraction valueOf (String s)" para converter de strings em frações. Implementar métodos de fábrica semelhantes para converter de int, double, etc.
  • Implementar adição, multiplicação, etc.
  • Adicionar construtor de números inteiros
  • Substituir igual a / hashCode
  • Considere fazer de Fraction uma interface com uma implementação que alterne para BigInteger conforme necessário
  • Considere subclassificar o número
  • Considere incluir constantes nomeadas para valores comuns como 0 e 1
  • Considere torná-lo serializável
  • Teste para divisão por zero
  • Documente sua API

Basicamente, dê uma olhada na API para outras classes de valor como Double , Integer e faça o que eles fazem :)

Dave Ray
fonte
3

Se você multiplicar o numerador e o denominador de uma Fração pelo denominador da outra e vice-versa, você acaba com duas frações (que ainda são os mesmos valores) com o mesmo denominador e você pode comparar os numeradores diretamente. Portanto, você não precisaria calcular o valor duplo:

public int compareTo(Fraction frac) {
    int t = this.numerator * frac.getDenominator();
    int f = frac.getNumerator() * this.denominator;
    if(t>f) return 1;
    if(f>t) return -1;
    return 0;
}
Francisco canedo
fonte
Isso falhará se frac.getDenominator () e this.denominator tiverem sinais opostos. (veja meu post.) Também você deve estar atento para o fato de que a multiplicação pode transbordar.
Jason S
Sim, é verdade. Mas, nesse caso, prefiro a implementação de Kip, que pelo menos posso entender. ;)
Francisco Canedo
Devo ressaltar que, em minha implementação, apenas o numerador pode ser negativo. Eu também uso BigIntegers para que nunca haja um estouro (às custas de algum desempenho, é claro).
Kip
2

como eu poderia melhorar esse código:

  1. um construtor baseado em String Fraction (String s) // espera "número / número"
  2. um construtor de cópia Fração (cópia de fração)
  3. sobrescrever o método clone
  4. implementa os métodos equals, toString e hashcode
  5. implementa a interface java.io.Serializable, Comparable
  6. um método "double getDoubleValue ()"
  7. um método adicionar / dividir / etc ...
  8. Eu tornaria essa classe imutável (sem setters)
Pierre
fonte
Uma lista muito boa. Provavelmente não há necessidade de clone / serializável, mas todo o resto é razoável.
Outlaw Programmer
@OutlawProgrammer: Sim, 8 ou 3. Clonável, imutável não faz sentido.
maaartinus
2

Você já tem uma função compareTo ... Eu implementaria a interface Comparable.

Pode não importar muito para o que você vai fazer com ele.

Dave Costa
fonte
2

Se você está se sentindo aventureiro, dê uma olhada no JScience . Tem uma Rationalclasse que representa frações.

Zach Scrivena
fonte
2

Especificamente : Existe uma maneira melhor de lidar com a passagem de um denominador zero? Definir o denominador como 1 parece bastante arbitrário. Como posso fazer isso direito?

Eu diria que lance uma ArithmeticException para dividir por zero, já que é isso que realmente está acontecendo:

public Fraction(int numerator, int denominator) {
    if(denominator == 0)
        throw new ArithmeticException("Divide by zero.");
    this.numerator = numerator;
    this.denominator = denominator;
}

Em vez de "Dividir por zero.", Você pode querer fazer a mensagem dizer "Dividir por zero: Denominador para Fração é zero."

Kip
fonte
1

Depois de criar um objeto de fração, por que você deseja permitir que outros objetos definam o numerador ou o denominador? Eu acho que estes devem ser apenas para leitura. Isso torna o objeto imutável ...

Além disso ... definir o denominador como zero deve lançar uma exceção de argumento inválido (não sei o que é em Java)

Jason Punyon
fonte
Ou lance novo ArithmeticException ("Divide by zero.")
Kip
1

Timothy Budd tem uma excelente implementação de uma classe Rational em seu "Data Structures in C ++". Linguagem diferente, é claro, mas é muito bem adaptada para Java.

Eu recomendaria mais construtores. Um construtor padrão teria numerador 0, denominador 1. Um único construtor arg assumiria um denominador de 1. Pense em como seus usuários podem usar esta classe.

Sem verificação de denominador zero? A programação por contrato requer que você o adicione.

duffymo
fonte
1

Vou em terceiro, quinto ou qualquer outra recomendação para tornar sua fração imutável. Eu também recomendo que você estenda a classe Number . Eu provavelmente olharia para o Double classe , já que você provavelmente vai querer implementar muitos dos mesmos métodos.

Você provavelmente também deve implementar Comparable e Serializable, pois esse comportamento provavelmente será o esperado. Portanto, você precisará implementar compareTo (). Você também precisará substituir equals () e eu não posso enfatizar o suficiente para que você também substitua hashCode (). Esse pode ser um dos poucos casos em que você não deseja que compareTo () e equals () sejam consistentes, pois as frações redutíveis entre si não são necessariamente iguais.

James
fonte
1

Uma prática de limpeza que gosto é ter apenas uma devolução.

 public int compareTo(Fraction frac) {
        int result = 0
        double t = this.doubleValue();
        double f = frac.doubleValue();
        if(t>f) 
           result = 1;
        else if(f>t) 
           result -1;
        return result;
    }
Milhous
fonte
1

Use a classe Rational da biblioteca JScience . É a melhor coisa para aritmética fracionária que vi em Java.

Alexander Temerev
fonte
1

Limpei a resposta de Cletus :

  • Adicionado Javadoc para todos os métodos.
  • Adicionadas verificações para condições prévias de método.
  • A análise customizada substituída valueOf(String)pela, BigInteger(String)que é mais flexível e rápida.
import com.google.common.base.Splitter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.List;
import java.util.Objects;
import org.bitbucket.cowwoc.preconditions.Preconditions;

/**
 * A rational fraction, represented by {@code numerator / denominator}.
 * <p>
 * This implementation is based on <a
 * href="https://stackoverflow.com/a/474577/14731">https://stackoverflow.com/a/474577/14731</a>
 * <p>
 * @author Gili Tzabari
 */
public final class BigRational extends Number implements Comparable<BigRational>
{
    private static final long serialVersionUID = 0L;
    public static final BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    public static final BigRational ONE = new BigRational(BigInteger.ONE, BigInteger.ONE);

    /**
     * Ensures the fraction the denominator is positive and optionally divides the numerator and
     * denominator by the greatest common factor.
     * <p>
     * @param numerator   a numerator
     * @param denominator a denominator
     * @param checkGcd    true if the numerator and denominator should be divided by the greatest
     *                    common factor
     * @return the canonical representation of the rational fraction
     */
    private static BigRational canonical(BigInteger numerator, BigInteger denominator,
        boolean checkGcd)
    {
        assert (numerator != null);
        assert (denominator != null);
        if (denominator.signum() == 0)
            throw new IllegalArgumentException("denominator is zero");
        if (numerator.signum() == 0)
            return ZERO;
        BigInteger newNumerator = numerator;
        BigInteger newDenominator = denominator;
        if (newDenominator.signum() < 0)
        {
            newNumerator = newNumerator.negate();
            newDenominator = newDenominator.negate();
        }
        if (checkGcd)
        {
            BigInteger gcd = newNumerator.gcd(newDenominator);
            if (!gcd.equals(BigInteger.ONE))
            {
                newNumerator = newNumerator.divide(gcd);
                newDenominator = newDenominator.divide(gcd);
            }
        }
        return new BigRational(newNumerator, newDenominator);
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     * @throws NullPointerException if numerator or denominator are null
     */
    public static BigRational valueOf(BigInteger numerator, BigInteger denominator)
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull();
        Preconditions.requireThat(denominator, "denominator").isNotNull();
        return canonical(numerator, denominator, true);
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     */
    public static BigRational valueOf(long numerator, long denominator)
    {
        BigInteger bigNumerator = BigInteger.valueOf(numerator);
        BigInteger bigDenominator = BigInteger.valueOf(denominator);
        return canonical(bigNumerator, bigDenominator, true);
    }

    /**
     * @param value the parameter value
     * @param name  the parameter name
     * @return the BigInteger representation of the parameter
     * @throws NumberFormatException if value is not a valid representation of BigInteger
     */
    private static BigInteger requireBigInteger(String value, String name)
        throws NumberFormatException
    {
        try
        {
            return new BigInteger(value);
        }
        catch (NumberFormatException e)
        {
            throw (NumberFormatException) new NumberFormatException("Invalid " + name + ": " + value).
                initCause(e);
        }
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     * @throws NullPointerException     if numerator or denominator are null
     * @throws IllegalArgumentException if numerator or denominator are empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    public static BigRational valueOf(String numerator, String denominator)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull().isNotEmpty();
        Preconditions.requireThat(denominator, "denominator").isNotNull().isNotEmpty();
        BigInteger bigNumerator = requireBigInteger(numerator, "numerator");
        BigInteger bigDenominator = requireBigInteger(denominator, "denominator");
        return canonical(bigNumerator, bigDenominator, true);
    }

    /**
     * @param value a string representation of a rational fraction (e.g. "12.34e5" or "3/4")
     * @return a BigRational representation of the String
     * @throws NullPointerException     if value is null
     * @throws IllegalArgumentException if value is empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    public static BigRational valueOf(String value)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
        List<String> fractionParts = Splitter.on('/').splitToList(value);
        if (fractionParts.size() == 1)
            return valueOfRational(value);
        if (fractionParts.size() == 2)
            return BigRational.valueOf(fractionParts.get(0), fractionParts.get(1));
        throw new IllegalArgumentException("Too many slashes: " + value);
    }

    /**
     * @param value a string representation of a rational fraction (e.g. "12.34e5")
     * @return a BigRational representation of the String
     * @throws NullPointerException     if value is null
     * @throws IllegalArgumentException if value is empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    private static BigRational valueOfRational(String value)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
        BigDecimal bigDecimal = new BigDecimal(value);
        int scale = bigDecimal.scale();
        BigInteger numerator = bigDecimal.unscaledValue();
        BigInteger denominator;
        if (scale > 0)
            denominator = BigInteger.TEN.pow(scale);
        else
        {
            numerator = numerator.multiply(BigInteger.TEN.pow(-scale));
            denominator = BigInteger.ONE;
        }

        return canonical(numerator, denominator, true);
    }

    private final BigInteger numerator;
    private final BigInteger denominator;

    /**
     * @param numerator   the numerator
     * @param denominator the denominator
     * @throws NullPointerException if numerator or denominator are null
     */
    private BigRational(BigInteger numerator, BigInteger denominator)
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull();
        Preconditions.requireThat(denominator, "denominator").isNotNull();
        this.numerator = numerator;
        this.denominator = denominator;
    }

    /**
     * @return the numerator
     */
    public BigInteger getNumerator()
    {
        return numerator;
    }

    /**
     * @return the denominator
     */
    public BigInteger getDenominator()
    {
        return denominator;
    }

    @Override
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public int compareTo(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();

        // canonical() ensures denominator is positive
        if (numerator.signum() != other.numerator.signum())
            return numerator.signum() - other.numerator.signum();

        // Set the denominator to a common multiple before comparing the numerators
        BigInteger first = numerator.multiply(other.denominator);
        BigInteger second = other.numerator.multiply(denominator);
        return first.compareTo(second);
    }

    /**
     * @param other another rational fraction
     * @return the result of adding this object to {@code other}
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational add(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();
        if (other.numerator.signum() == 0)
            return this;
        if (numerator.signum() == 0)
            return other;
        if (denominator.equals(other.denominator))
            return new BigRational(numerator.add(other.numerator), denominator);
        return canonical(numerator.multiply(other.denominator).
            add(other.numerator.multiply(denominator)),
            denominator.multiply(other.denominator), true);
    }

    /**
     * @param other another rational fraction
     * @return the result of subtracting {@code other} from this object
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational subtract(BigRational other)
    {
        return add(other.negate());
    }

    /**
     * @param other another rational fraction
     * @return the result of multiplying this object by {@code other}
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational multiply(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();
        if (numerator.signum() == 0 || other.numerator.signum() == 0)
            return ZERO;
        if (numerator.equals(other.denominator))
            return canonical(other.numerator, denominator, true);
        if (other.numerator.equals(denominator))
            return canonical(numerator, other.denominator, true);
        if (numerator.negate().equals(other.denominator))
            return canonical(other.numerator.negate(), denominator, true);
        if (other.numerator.negate().equals(denominator))
            return canonical(numerator.negate(), other.denominator, true);
        return canonical(numerator.multiply(other.numerator), denominator.multiply(other.denominator),
            true);
    }

    /**
     * @param other another rational fraction
     * @return the result of dividing this object by {@code other}
     * @throws NullPointerException if other is null
     */
    public BigRational divide(BigRational other)
    {
        return multiply(other.invert());
    }

    /**
     * @return true if the object is a whole number
     */
    public boolean isInteger()
    {
        return numerator.signum() == 0 || denominator.equals(BigInteger.ONE);
    }

    /**
     * Returns a BigRational whose value is (-this).
     * <p>
     * @return -this
     */
    public BigRational negate()
    {
        return new BigRational(numerator.negate(), denominator);
    }

    /**
     * @return a rational fraction with the numerator and denominator swapped
     */
    public BigRational invert()
    {
        return canonical(denominator, numerator, false);
    }

    /**
     * @return the absolute value of this {@code BigRational}
     */
    public BigRational abs()
    {
        if (numerator.signum() < 0)
            return negate();
        return this;
    }

    /**
     * @param exponent exponent to which both numerator and denominator is to be raised.
     * @return a BigRational whose value is (this<sup>exponent</sup>).
     */
    public BigRational pow(int exponent)
    {
        return canonical(numerator.pow(exponent), denominator.pow(exponent), true);
    }

    /**
     * @param other another rational fraction
     * @return the minimum of this object and the other fraction
     */
    public BigRational min(BigRational other)
    {
        if (compareTo(other) <= 0)
            return this;
        return other;
    }

    /**
     * @param other another rational fraction
     * @return the maximum of this object and the other fraction
     */
    public BigRational max(BigRational other)
    {
        if (compareTo(other) >= 0)
            return this;
        return other;
    }

    /**
     * @param scale        scale of the BigDecimal quotient to be returned
     * @param roundingMode the rounding mode to apply
     * @return a BigDecimal representation of this object
     * @throws NullPointerException if roundingMode is null
     */
    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode)
    {
        Preconditions.requireThat(roundingMode, "roundingMode").isNotNull();
        if (isInteger())
            return new BigDecimal(numerator);
        return new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    @Override
    public int intValue()
    {
        return (int) longValue();
    }

    @Override
    public long longValue()
    {
        if (isInteger())
            return numerator.longValue();
        return numerator.divide(denominator).longValue();
    }

    @Override
    public float floatValue()
    {
        return (float) doubleValue();
    }

    @Override
    public double doubleValue()
    {
        if (isInteger())
            return numerator.doubleValue();
        return numerator.doubleValue() / denominator.doubleValue();
    }

    @Override
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public boolean equals(Object o)
    {
        if (this == o)
            return true;
        if (!(o instanceof BigRational))
            return false;
        BigRational other = (BigRational) o;

        return numerator.equals(other.denominator) && Objects.equals(denominator, other.denominator);
    }

    @Override
    public int hashCode()
    {
        return Objects.hash(numerator, denominator);
    }

    /**
     * Returns the String representation: {@code numerator / denominator}.
     */
    @Override
    public String toString()
    {
        if (isInteger())
            return String.format("%,d", numerator);
        return String.format("%,d / %,d", numerator, denominator);
    }
}
Gili
fonte
0

Observação inicial:

Nunca escreva isso:

if ( condition ) statement;

Isto é muito melhor

if ( condition ) { statement };

Basta criar para criar um bom hábito.

Ao tornar a classe imutável conforme sugerido, você também pode aproveitar o double para realizar as operações equals e hashCode e compareTo

Aqui está minha versão suja rápida:

public final class Fraction implements Comparable {

    private final int numerator;
    private final int denominator;
    private final Double internal;

    public static Fraction createFraction( int numerator, int denominator ) { 
        return new Fraction( numerator, denominator );
    }

    private Fraction(int numerator, int denominator) {
        this.numerator   = numerator;
        this.denominator = denominator;
        this.internal = ((double) numerator)/((double) denominator);
    }


    public int getNumerator() {
        return this.numerator;
    }

    public int getDenominator() {
        return this.denominator;
    }


    private double doubleValue() {
        return internal;
    }

    public int compareTo( Object o ) {
        if ( o instanceof Fraction ) { 
            return internal.compareTo( ((Fraction)o).internal );
        }
        return 1;
    }

    public boolean equals( Object o ) {
          if ( o instanceof Fraction ) {  
             return this.internal.equals( ((Fraction)o).internal );
          } 
          return false;
    }

    public int hashCode() { 
        return internal.hashCode();
    }



    public String toString() { 
        return String.format("%d/%d", numerator, denominator );
    }

    public static void main( String [] args ) { 
        System.out.println( Fraction.createFraction( 1 , 2 ) ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).hashCode() ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).compareTo( Fraction.createFraction(2,4) ) ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).equals( Fraction.createFraction(4,8) ) ) ;
        System.out.println( Fraction.createFraction( 3 , 9 ).equals( Fraction.createFraction(1,3) ) ) ;
    }       

}

Sobre o método de fábrica estático, pode ser útil posteriormente, se você criar uma subclasse de Fração para lidar com coisas mais complexas ou se decidir usar um pool para os objetos usados ​​com mais frequência.

Pode não ser o caso, eu apenas queria salientar. :)

Consulte o primeiro item Java efetivo .

OscarRyz
fonte
0

Pode ser útil adicionar coisas simples como retribuir, obter o resto e ficar inteiro.

Darth Joshua
fonte
esta resposta adequada como comentário.
Jasonw
Sinto muito pela resposta tardia, mas acredito que há um número mínimo de representantes (50?) Necessários para comentar sobre uma resposta que eu não tenho ...
Darth Joshua
0

Mesmo que você tenha os métodos compareTo (), se quiser usar utilitários como Collections.sort (), você também deve implementar Comparable.

public class Fraction extends Number implements Comparable<Fraction> {
 ...
}

Além disso, para uma exibição bonita, recomendo substituir toString ()

public String toString() {
    return this.getNumerator() + "/" + this.getDenominator();
}

E, por fim, tornaria a classe pública para que você pudesse usá-la em diferentes pacotes.

Kenny Cason
fonte
0

Esta função simplifica usando o algoritmo euclediano é bastante útil na definição de frações

 public Fraction simplify(){


     int safe;
     int h= Math.max(numerator, denominator);
     int h2 = Math.min(denominator, numerator);

     if (h == 0){

         return new Fraction(1,1);
     }

     while (h>h2 && h2>0){

          h = h - h2;
          if (h>h2){

              safe = h;
              h = h2;
              h2 = safe;

          }  

     }

  return new Fraction(numerator/h,denominator/h);

 }
Brennan
fonte
0

Para implementação de Fração / Racional de nível de indústria, eu iria implementá-lo para que possa representar NaN, infinito positivo, infinito negativo e, opcionalmente, zero negativo com semântica operacional exatamente igual aos estados do padrão IEEE 754 para aritmética de ponto flutuante (também facilita o conversão de / para valores de ponto flutuante). Além disso, uma vez que a comparação com zero, um e os valores especiais acima precisa apenas de comparação simples, mas combinada do numerador e denominador contra 0 e 1 - eu adicionaria vários métodos isXXX e compareToXXX para facilidade de uso (por exemplo, eq0 (). use numerador == 0 && denominador! = 0 nos bastidores em vez de deixar o cliente comparar com uma instância de valor zero). Alguns valores predefinidos estaticamente (ZERO, ONE, TWO, TEN, ONE_TENTH, NAN, etc.) também são úteis, já que eles aparecem em vários lugares como valores constantes. Esta é a melhor maneira IMHO.

Tiamin
fonte
0

Fração de classe:

     public class Fraction {
        private int num;            // numerator 
        private int denom;          // denominator 
        // default constructor
        public Fraction() {}
        // constructor
        public Fraction( int a, int b ) {
            num = a;
            if ( b == 0 )
                throw new ZeroDenomException();
            else
                denom = b;
        }
        // return string representation of ComplexNumber
        @Override
        public String toString() {
            return "( " + num + " / " + denom + " )";
        }
        // the addition operation
        public Fraction add(Fraction x){
            return new Fraction(
                    x.num * denom + x.denom * num, x.denom * denom );
        }
        // the multiplication operation
        public Fraction multiply(Fraction x) {
            return new Fraction(x.num * num, x.denom * denom);
        } 
}

O programa principal:

    static void main(String[] args){
    Scanner input = new Scanner(System.in);
    System.out.println("Enter numerator and denominator of first fraction");
    int num1 =input.nextInt();
    int denom1 =input.nextInt();
    Fraction x = new Fraction(num1, denom1);
    System.out.println("Enter numerator and denominator of second fraction");
    int num2 =input.nextInt();
    int denom2 =input.nextInt();
    Fraction y = new Fraction(num2, denom2);
    Fraction result = new Fraction();
    System.out.println("Enter required operation: A (Add), M (Multiply)");
    char op = input.next().charAt(0);
    if(op == 'A') {
        result = x.add(y);
        System.out.println(x + " + " + y + " = " + result);
    }
BasmaSH
fonte