Ambos são formatos de armazenamento em colunas (disco) para uso em sistemas de análise de dados. Ambos estão integrados no Apache Arrow ( pacote pyarrow para python) e são projetados para corresponder a Arrow como uma camada analítica em memória colunar.
Como os dois formatos diferem?
Você sempre deve preferir penas ao trabalhar com pandas, quando possível?
Quais são os casos de uso em que a pena é mais adequada do que o parquet e vice- versa?
Apêndice
Encontrei algumas dicas aqui https://github.com/wesm/feather/issues/188 , mas dada a pouca idade deste projeto, é possivelmente um pouco desatualizado.
Não é um teste de velocidade sério porque estou apenas despejando e carregando um Dataframe inteiro, mas para lhe dar uma impressão, se você nunca ouviu falar dos formatos antes:
# IPython
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.feather as feather
import pyarrow.parquet as pq
import fastparquet as fp
df = pd.DataFrame({'one': [-1, np.nan, 2.5],
'two': ['foo', 'bar', 'baz'],
'three': [True, False, True]})
print("pandas df to disk ####################################################")
print('example_feather:')
%timeit feather.write_feather(df, 'example_feather')
# 2.62 ms ± 35.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print('example_parquet:')
%timeit pq.write_table(pa.Table.from_pandas(df), 'example.parquet')
# 3.19 ms ± 51 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print()
print("for comparison:")
print('example_pickle:')
%timeit df.to_pickle('example_pickle')
# 2.75 ms ± 18.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print('example_fp_parquet:')
%timeit fp.write('example_fp_parquet', df)
# 7.06 ms ± 205 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
print('example_hdf:')
%timeit df.to_hdf('example_hdf', 'key_to_store', mode='w', table=True)
# 24.6 ms ± 4.45 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
print()
print("pandas df from disk ##################################################")
print('example_feather:')
%timeit feather.read_feather('example_feather')
# 969 µs ± 1.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print('example_parquet:')
%timeit pq.read_table('example.parquet').to_pandas()
# 1.9 ms ± 5.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print("for comparison:")
print('example_pickle:')
%timeit pd.read_pickle('example_pickle')
# 1.07 ms ± 6.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print('example_fp_parquet:')
%timeit fp.ParquetFile('example_fp_parquet').to_pandas()
# 4.53 ms ± 260 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
print('example_hdf:')
%timeit pd.read_hdf('example_hdf')
# 10 ms ± 43.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# pandas version: 0.22.0
# fastparquet version: 0.1.3
# numpy version: 1.13.3
# pandas version: 0.22.0
# pyarrow version: 0.8.0
# sys.version: 3.6.3
# example Dataframe taken from https://arrow.apache.org/docs/python/parquet.html
generate_floats
função em seu código de benchmark aqui wesmckinney.com/blog/python-parquet-update não garanteunique_values
. Eles são apenas aleatórios. Com n = 100M, obtive duplicatas em duas de dez execuções. Apenas mencionando caso alguém use esta função onde a exclusividade deve ser garantida.