Perda não diminui em Pytorch CNN

8

Estou fazendo uma CNN com Pytorch para uma tarefa, mas ela não aprende e melhora a precisão. Eu fiz uma versão trabalhando com o conjunto de dados MNIST para que eu pudesse publicá-la aqui. Eu só estou procurando uma resposta sobre por que não está funcionando. A arquitetura é ótima, eu a implementei no Keras e tive mais de 92% de precisão após três épocas. Nota: reformulei o MNIST em imagens de 60x60 porque é assim que as imagens estão no meu problema "real".

import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()


def resize(pics):
    pictures = []
    for image in pics:
        image = Image.fromarray(image).resize((dim, dim))
        image = np.array(image)
        pictures.append(image)
    return np.array(pictures)


dim = 60

x_train, x_test = resize(x_train), resize(x_test) # because my real problem is in 60x60

x_train = x_train.reshape(-1, 1, dim, dim).astype('float32') / 255
x_test = x_test.reshape(-1, 1, dim, dim).astype('float32') / 255
y_train, y_test = y_train.astype('float32'), y_test.astype('float32') 

if torch.cuda.is_available():
    x_train = torch.from_numpy(x_train)[:10_000]
    x_test = torch.from_numpy(x_test)[:4_000] 
    y_train = torch.from_numpy(y_train)[:10_000] 
    y_test = torch.from_numpy(y_test)[:4_000]


class ConvNet(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)

        self.fc1 = nn.Linear(5*5*128, 1024) 
        self.fc2 = nn.Linear(1024, 2048)
        self.fc3 = nn.Linear(2048, 1)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))

        x = x.view(x.size(0), -1) 
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.dropout(x, 0.5)
        x = torch.sigmoid(self.fc3(x))
        return x


net = ConvNet()

optimizer = optim.Adam(net.parameters(), lr=0.03)

loss_function = nn.BCELoss()


class FaceTrain:

    def __init__(self):
        self.len = x_train.shape[0]
        self.x_train = x_train
        self.y_train = y_train

    def __getitem__(self, index):
        return x_train[index], y_train[index].unsqueeze(0)

    def __len__(self):
        return self.len


class FaceTest:

    def __init__(self):
        self.len = x_test.shape[0]
        self.x_test = x_test
        self.y_test = y_test

    def __getitem__(self, index):
        return x_test[index], y_test[index].unsqueeze(0)

    def __len__(self):
        return self.len


train = FaceTrain()
test = FaceTest()

train_loader = DataLoader(dataset=train, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test, batch_size=64, shuffle=True)

epochs = 10
steps = 0
train_losses, test_losses = [], []
for e in range(epochs):
    running_loss = 0
    for images, labels in train_loader: 
        optimizer.zero_grad()
        log_ps = net(images)
        loss = loss_function(log_ps, labels)
        loss.backward()
        optimizer.step()        
        running_loss += loss.item()        
    else:
        test_loss = 0
        accuracy = 0        

        with torch.no_grad():
            for images, labels in test_loader: 
                log_ps = net(images)
                test_loss += loss_function(log_ps, labels)                
                ps = torch.exp(log_ps)
                top_p, top_class = ps.topk(1, dim=1)
                equals = top_class.type('torch.LongTensor') == labels.type(torch.LongTensor).view(*top_class.shape)
                accuracy += torch.mean(equals.type('torch.FloatTensor'))
        train_losses.append(running_loss/len(train_loader))
        test_losses.append(test_loss/len(test_loader))
        print("[Epoch: {}/{}] ".format(e+1, epochs),
              "[Training Loss: {:.3f}] ".format(running_loss/len(train_loader)),
              "[Test Loss: {:.3f}] ".format(test_loss/len(test_loader)),
              "[Test Accuracy: {:.3f}]".format(accuracy/len(test_loader)))
Nicolas Gervais
fonte
1
As comp.ai.neural-netsperguntas frequentes têm ótimas sugestões sobre onde procurar se sua rede neural não está aprendendo; Eu recomendo começar por aí.
Ari Cooper-Davis
A função de perda, o formato de saída da rede e os rótulos de destino não fazem sentido aqui (essa combinação pelo menos está errada). O MNIST possui 10 classes e os rótulos são números inteiros entre 0 e 9. BCELoss espera um valor único entre 0 e 1 para cada destino. Em vez disso, você deve produzir 10 logits (não necessariamente sigmoided) e depois usá-lo nn.CrossEntropyLosspara problemas de classificação de classe única. nn.CrossEntropyLossaplica o softmax e o NLLLoss como uma única operação, portanto, não o softmax primeiro.
jodag
Como alternativa, se você quiser fazer um problema de regressão, ou seja, estimar um número real como saída (não recomendado para problemas do tipo de classificação), tente, nn.MSELossmas precisará ajustar os alvos para que caiam no intervalo da saída sigmóide ou não Não aplique sigmóide após a camada final.
jodag
Você conseguiu que funcionasse dessa maneira? Agora está me dizendo isso RuntimeError: multi-target not supported.
Nicolas Gervais
você precisa espremer uma dimensão de etiquetas (deve ser um tensor 1D de inteiros do tamanho do tamanho do lote)
jodag

Respostas:

7

Primeiro as principais questões ...

1. O principal problema com esse código é que você está usando o formato de saída errado e a função de perda incorreta para classificação.

nn.BCELosscalcula a perda de entropia cruzada binária . Isso é aplicável quando você tem um ou mais destinos que são 0 ou 1 (daí o binário). No seu caso, o destino é um número inteiro único entre 0 e 9. Como há apenas um pequeno número de valores-alvo em potencial, a abordagem mais comum é usar a perda categórica de entropia cruzada ( nn.CrossEntropyLoss). A definição "teórica" ​​de perda de entropia cruzada espera que as saídas da rede e os alvos sejam 10 vetores dimensionais em que o alvo seja todos os zeros, exceto em um local (codificado um a quente). No entanto, por razões de estabilidade computacional e eficiência de espaço, o pytorch nn.CrossEntropyLossleva diretamente o número inteiro como alvo . Contudo, você ainda precisará fornecer um vetor de saída 10 dimensional da sua rede.

# pseudo code (ignoring batch dimension)
loss = nn.functional.cross_entropy_loss(<output 10d vector>, <integer target>)

Para corrigir esse problema no seu código, precisamos ter fc3um recurso de 10 dimensões de saída e precisamos que os rótulos sejam inteiros (não flutuantes). Além disso, não há necessidade de usar .sigmoidno fc3, pois a função de perda de entropia cruzada do pytorch aplica internamente o log-softmax antes de calcular o valor da perda final.

2. Conforme apontado por Serget Dymchenko, você precisa mudar a rede para o evalmodo durante a inferência e o trainmodo durante o trem. Isso afeta principalmente as camadas de desistência e batch_norm, pois se comportam de maneira diferente durante o treinamento e a inferência.

3. Uma taxa de aprendizado de 0,03 é provavelmente um pouco alta demais. Funciona muito bem com uma taxa de aprendizado de 0,001 e, em algumas experiências, vi o treinamento divergir em 0,03.


Para acomodar essas correções, é necessário fazer várias alterações. As correções mínimas para o código são mostradas abaixo. Comentei todas as linhas que foram alteradas, ####seguidas por uma breve descrição da mudança.

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()


def resize(pics):
    pictures = []
    for image in pics:
        image = Image.fromarray(image).resize((dim, dim))
        image = np.array(image)
        pictures.append(image)
    return np.array(pictures)


dim = 60

x_train, x_test = resize(x_train), resize(x_test) # because my real problem is in 60x60

x_train = x_train.reshape(-1, 1, dim, dim).astype('float32') / 255
x_test = x_test.reshape(-1, 1, dim, dim).astype('float32') / 255
#### float32 -> int64
y_train, y_test = y_train.astype('int64'), y_test.astype('int64')

#### no reason to test for cuda before converting to numpy

#### I assume you were taking a subset for debugging? No reason to not use all the data
x_train = torch.from_numpy(x_train)
x_test = torch.from_numpy(x_test)
y_train = torch.from_numpy(y_train)
y_test = torch.from_numpy(y_test)


class ConvNet(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)

        self.fc1 = nn.Linear(5*5*128, 1024)
        self.fc2 = nn.Linear(1024, 2048)
        #### 1 -> 10
        self.fc3 = nn.Linear(2048, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))

        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.dropout(x, 0.5)
        #### removed sigmoid
        x = self.fc3(x)
        return x


net = ConvNet()

#### 0.03 -> 1e-3
optimizer = optim.Adam(net.parameters(), lr=1e-3)

#### BCELoss -> CrossEntropyLoss
loss_function = nn.CrossEntropyLoss()


class FaceTrain:

    def __init__(self):
        self.len = x_train.shape[0]
        self.x_train = x_train
        self.y_train = y_train

    def __getitem__(self, index):
        #### .unsqueeze(0) removed
        return x_train[index], y_train[index]

    def __len__(self):
        return self.len


class FaceTest:

    def __init__(self):
        self.len = x_test.shape[0]
        self.x_test = x_test
        self.y_test = y_test

    def __getitem__(self, index):
        #### .unsqueeze(0) removed
        return x_test[index], y_test[index]

    def __len__(self):
        return self.len


train = FaceTrain()
test = FaceTest()

train_loader = DataLoader(dataset=train, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test, batch_size=64, shuffle=True)

epochs = 10
steps = 0
train_losses, test_losses = [], []
for e in range(epochs):
    running_loss = 0
    #### put net in train mode
    net.train()
    for idx, (images, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        log_ps = net(images)
        loss = loss_function(log_ps, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    else:
        test_loss = 0
        accuracy = 0

        #### put net in eval mode
        net.eval()
        with torch.no_grad():
            for images, labels in test_loader:
                log_ps = net(images)
                test_loss += loss_function(log_ps, labels)
                #### removed torch.exp() since exponential is monotone, taking it doesn't change the order of outputs. Similarly with torch.softmax()
                top_p, top_class = log_ps.topk(1, dim=1)
                #### convert to float/long using proper methods. what you have won't work for cuda tensors.
                equals = top_class.long() == labels.long().view(*top_class.shape)
                accuracy += torch.mean(equals.float())
        train_losses.append(running_loss/len(train_loader))
        test_losses.append(test_loss/len(test_loader))
        print("[Epoch: {}/{}] ".format(e+1, epochs),
              "[Training Loss: {:.3f}] ".format(running_loss/len(train_loader)),
              "[Test Loss: {:.3f}] ".format(test_loss/len(test_loader)),
              "[Test Accuracy: {:.3f}]".format(accuracy/len(test_loader)))

Os resultados do treinamento são agora ...

[Epoch: 1/10]  [Training Loss: 0.139]  [Test Loss: 0.046]  [Test Accuracy: 0.986]
[Epoch: 2/10]  [Training Loss: 0.046]  [Test Loss: 0.042]  [Test Accuracy: 0.987]
[Epoch: 3/10]  [Training Loss: 0.031]  [Test Loss: 0.040]  [Test Accuracy: 0.988]
[Epoch: 4/10]  [Training Loss: 0.022]  [Test Loss: 0.029]  [Test Accuracy: 0.990]
[Epoch: 5/10]  [Training Loss: 0.017]  [Test Loss: 0.066]  [Test Accuracy: 0.987]
[Epoch: 6/10]  [Training Loss: 0.015]  [Test Loss: 0.056]  [Test Accuracy: 0.985]
[Epoch: 7/10]  [Training Loss: 0.018]  [Test Loss: 0.039]  [Test Accuracy: 0.991]
[Epoch: 8/10]  [Training Loss: 0.012]  [Test Loss: 0.057]  [Test Accuracy: 0.988]
[Epoch: 9/10]  [Training Loss: 0.012]  [Test Loss: 0.041]  [Test Accuracy: 0.991]
[Epoch: 10/10]  [Training Loss: 0.007]  [Test Loss: 0.048]  [Test Accuracy: 0.992]

Alguns outros problemas que melhorarão seu desempenho e código.

4. Você nunca está movendo o modelo para a GPU. Isso significa que você não estará recebendo aceleração da GPU.

5. torchvision foi desenvolvido com todas as transformações e conjuntos de dados padrão e foi desenvolvido para ser usado com o PyTorch. Eu recomendo usá-lo. Isso também remove a dependência de keras no seu código.

6. Normalize seus dados subtraindo a média e dividindo pelo desvio padrão para melhorar o desempenho da sua rede. Com a visão da tocha, você pode usar transforms.Normalize. Isso não fará muita diferença no MNIST, porque já é fácil demais. Mas em problemas mais difíceis, acaba sendo importante.


Código aprimorado adicional é mostrado abaixo (muito mais rápido na GPU).

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms

dim = 60

class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)

        self.fc1 = nn.Linear(5 * 5 * 128, 1024)
        self.fc2 = nn.Linear(1024, 2048)
        self.fc3 = nn.Linear(2048, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))

        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.dropout(x, 0.5)
        x = self.fc3(x)
        return x


net = ConvNet()
if torch.cuda.is_available():
    net.cuda()

optimizer = optim.Adam(net.parameters(), lr=1e-3)

loss_function = nn.CrossEntropyLoss()

train_dataset = MNIST('./data', train=True, download=True,
                      transform=transforms.Compose([
                          transforms.Resize((dim, dim)),
                          transforms.ToTensor(),
                          transforms.Normalize((0.1307,), (0.3081,))
                      ]))
test_dataset = MNIST('./data', train=False, download=True,
                     transform=transforms.Compose([
                         transforms.Resize((dim, dim)),
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True, num_workers=8)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False, num_workers=8)

epochs = 10
steps = 0
train_losses, test_losses = [], []
for e in range(epochs):
    running_loss = 0
    net.train()
    for images, labels in train_loader:
        if torch.cuda.is_available():
            images, labels = images.cuda(), labels.cuda()
        optimizer.zero_grad()
        log_ps = net(images)
        loss = loss_function(log_ps, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    else:
        test_loss = 0
        accuracy = 0

        net.eval()
        with torch.no_grad():
            for images, labels in test_loader:
                if torch.cuda.is_available():
                    images, labels = images.cuda(), labels.cuda()
                log_ps = net(images)
                test_loss += loss_function(log_ps, labels)
                top_p, top_class = log_ps.topk(1, dim=1)
                equals = top_class.flatten().long() == labels
                accuracy += torch.mean(equals.float()).item()
        train_losses.append(running_loss/len(train_loader))
        test_losses.append(test_loss/len(test_loader))
        print("[Epoch: {}/{}] ".format(e+1, epochs),
              "[Training Loss: {:.3f}] ".format(running_loss/len(train_loader)),
              "[Test Loss: {:.3f}] ".format(test_loss/len(test_loader)),
              "[Test Accuracy: {:.3f}]".format(accuracy/len(test_loader)))

Resultados atualizados do treinamento ...

[Epoch: 1/10]  [Training Loss: 0.125]  [Test Loss: 0.045]  [Test Accuracy: 0.987]
[Epoch: 2/10]  [Training Loss: 0.043]  [Test Loss: 0.031]  [Test Accuracy: 0.991]
[Epoch: 3/10]  [Training Loss: 0.030]  [Test Loss: 0.030]  [Test Accuracy: 0.991]
[Epoch: 4/10]  [Training Loss: 0.024]  [Test Loss: 0.046]  [Test Accuracy: 0.990]
[Epoch: 5/10]  [Training Loss: 0.020]  [Test Loss: 0.032]  [Test Accuracy: 0.992]
[Epoch: 6/10]  [Training Loss: 0.017]  [Test Loss: 0.046]  [Test Accuracy: 0.991]
[Epoch: 7/10]  [Training Loss: 0.015]  [Test Loss: 0.034]  [Test Accuracy: 0.992]
[Epoch: 8/10]  [Training Loss: 0.011]  [Test Loss: 0.048]  [Test Accuracy: 0.992]
[Epoch: 9/10]  [Training Loss: 0.012]  [Test Loss: 0.037]  [Test Accuracy: 0.991]
[Epoch: 10/10]  [Training Loss: 0.013]  [Test Loss: 0.038]  [Test Accuracy: 0.992]
jodag
fonte
1
Funcionou! Na verdade, cometi um grande erro, esse problema simplificado do MNIST tinha 10 classes e meu problema apenas duas. Então não pude usar tudo o que você fez. Mas, brincando com suas recomendações, consegui fazê-lo funcionar, então, obrigado!
Nicolas Gervais
4

Uma coisa que notei é que você testa o modelo no modo de trem. Você precisa ligar net.eval()para desativar as desistências (e net.train()novamente para colocá-lo novamente no modo de trem).

Talvez haja outras questões. A perda de treinamento está diminuindo? Você já tentou se ajustar demais em um único exemplo?

Sergii Dymchenko
fonte