lme4 ou outro código de pacote R de código aberto equivalente a asreml-R

12

Eu quero ajustar o modelo misto usando lme4, nlme, pacote de regressão baiano ou qualquer outro disponível.

Modelo misto nas convenções de codificação Asreml-R

Antes de entrar em detalhes, talvez desejemos ter detalhes sobre as convenções asreml-R, para aqueles que não estão familiarizados com os códigos ASREML.

y = Xτ + Zu + e ........................(1) ; 

o modelo misto usual com, y denota o vetor n × 1 de observações, onde τ é o vetor p × 1 de efeitos fixos, X é uma matriz de projeto n × p de classificação de coluna completa que associa observações à combinação apropriada de efeitos fixos , u é o vetor q × 1 de efeitos aleatórios, Z é a matriz de projeto n × q que associa observações à combinação apropriada de efeitos aleatórios e e é o vetor n × 1 de erros residuais.O modelo (1) é chamado um modelo misto linear ou modelo de efeitos lineares mistos. É assumido

insira a descrição da imagem aqui

onde as matrizes G e R são funções dos parâmetros γ e φ, respectivamente.

O parâmetro θ é um parâmetro de variação ao qual nos referiremos como o parâmetro de escala.

Nos modelos de efeitos mistos com mais de uma variação residual, surgindo, por exemplo, na análise de dados com mais de uma seção ou variável, o parâmetro θ é fixado em uma. Nos modelos de efeitos mistos com uma única variação residual, então θ é igual à variação residual (σ2). Nesse caso, R deve ser matriz de correlação. Mais detalhes sobre os modelos são fornecidos no manual do Asreml (link) .

Estruturas de variação para os erros: estrutura R e estruturas de variação para efeitos aleatórios: É possível especificar estruturas G.

insira a descrição da imagem aquiinsira a descrição da imagem aqui

modelagem de variação em asreml (), é importante entender a formação de estruturas de variação via produtos diretos. A suposição usual de mínimos quadrados (e o padrão em asreml ()) é que eles são distribuídos de forma independente e identificada (IID). No entanto, se os dados fossem de um experimento de campo disposto em uma matriz retangular de r linhas por c colunas, digamos, poderíamos organizar os resíduos e como uma matriz e potencialmente considerar que eles estavam correlacionados automaticamente dentro de linhas e colunas. um vetor em ordem de campo, ou seja, classificando as linhas de resíduos dentro de colunas (plotagens dentro de blocos), a variação dos resíduos pode ser então

insira a descrição da imagem aqui insira a descrição da imagem aquisão matrizes de correlação para o modelo de linha (ordem r, parâmetro de autocorrelação ½r) e modelo de coluna (ordem c, parâmetro de autocorrelação ½c), respectivamente. Mais especificamente, às vezes é assumida uma estrutura espacial autoregressiva separável bidimensional (AR1 x AR1) para os erros comuns em uma análise de campo.

Os dados de exemplo:

O nin89 é da biblioteca asreml-R, onde diferentes variedades foram cultivadas em réplicas / blocos em campo retangular. Para controlar a variabilidade adicional na direção da linha ou coluna, cada plotagem é referenciada como variáveis ​​de Linha e Coluna (design da coluna da linha). Assim, esta coluna de linha é projetada com bloqueio. O rendimento é medido variável.

Modelos de exemplo

Preciso de algo equivalente aos códigos asreml-R:

A sintaxe do modelo simples terá a seguinte aparência:

 rcb.asr <- asreml(yield  Variety, random =  Replicate, data = nin89)  
 .....model 0

O modelo linear é especificado nos argumentos fixo (obrigatório), aleatório (opcional) e rcov (componente de erro) como objetos de fórmula. O padrão é um termo de erro simples e não precisa ser formalmente especificado para o termo de erro, como no modelo 0 .

aqui a variedade é de efeito fixo e a aleatória é replicada (blocos). Além dos termos aleatórios e fixos, podemos especificar o termo do erro. Qual é o padrão neste modelo 0. O componente residual ou de erro do modelo é especificado em um objeto de fórmula através do argumento rcov, consulte os seguintes modelos 1: 4.

O modelo a seguir1 é mais complexo, no qual as estruturas G (aleatória) e R (erro) são especificadas.

Modelo 1:

data(nin89)


 # Model 1: RCB analysis with G and R structure
     rcb.asr <- asreml(yield ~ Variety, random = ~ idv(Replicate), 
      rcov = ~ idv(units), data = nin89)

Este modelo é equivalente ao modelo 0 acima e introduz o uso do modelo de variação G e R. Aqui, a opção random e rcov especifica as fórmulas random e rcov para especificar explicitamente as estruturas G e R. onde idv () é a função especial do modelo em asreml () que identifica o modelo de variação. A expressão idv (units) define explicitamente a matriz de variação de e para uma identidade em escala.

# Modelo 2: modelo espacial bidimensional com correlação em uma direção

  sp.asr <- asreml(yield ~ Variety, rcov = ~ Column:ar1(Row), data = nin89)

unidades experimentais de nin89 são indexadas por coluna e linha. Portanto, esperamos variação aleatória em duas direções - direção de linha e coluna neste caso. onde ar1 () é uma função especial que especifica um modelo de variação autoregressiva de primeira ordem para Row. Essa chamada especifica uma estrutura espacial bidimensional para erro, mas com correlação espacial apenas na direção da linha. O modelo de variação para Column é identidade (id ()), mas não precisa ser formalmente especificado, pois esse é o padrão.

# modelo 3: modelo espacial bidimensional, estrutura de erro em ambas as direções

 sp.asr <- asreml(yield ~ Variety, rcov = ~ ar1(Column):ar1(Row),  
 data = nin89)
sp.asr <- asreml(yield ~ Variety, random = ~ units, 
 rcov = ~ ar1(Column):ar1(Row), data = nin89)

semelhante ao modelo 2 acima, no entanto, a correlação é de duas direções - autorregressiva.

Não sei ao certo quanto desses modelos é possível com pacotes R de código aberto. Mesmo que a solução de qualquer um desses modelos seja de grande ajuda. Mesmo que o valor de +50 possa estimular o desenvolvimento desse pacote, será de grande ajuda!

Consulte MAYSaseen forneceu a saída de cada modelo e dados (como resposta) para comparação.

Edições: A sugestão a seguir foi recebida no fórum de discussão de modelos mistos: "Você pode ver os pacotes de covariância regressiva e espacial de David Clifford. O primeiro permite o ajuste de modelos mistos (gaussianos), nos quais é possível especificar a estrutura da matriz de covariância de maneira muito flexível (por exemplo, usei-o para dados de linhagem). O pacote spatialCovariance usa regress para fornecer modelos mais elaborados que o AR1xAR1, mas pode ser aplicável. Você pode ter que corresponder ao autor sobre como aplicá-lo ao seu problema exato. "

John
fonte
Tenho certeza de que os modelos 2-4 não são possíveis lme4. Você pode (a) nos dizer por que precisa fazer isso em lme4vez de asreml-R(b) considerar publicar r-sig-mixed-modelsonde há experiência mais relevante?
Ben Bolker
idéia básica é asreml-R requer uma licença (pelo menos para os usuários dos países desenvolvidos), se é possível em lme4 ou outros pacotes de modelo misto, que seria ótimo ...
John
Eu acho que isso não vai ser fácil. Eu acho que sua melhor aposta pode ser para definir uma nova corStructem nlme(para correlações anisotrópicos) ... Seria bom se você pudesse indicar sucintamente (em palavras ou equações) os modelos estatísticos correspondentes a estas declarações ASREML, já que não estamos todos familiarizados com sintaxe ASREML ...
Ben Bolker
1
A seguir, há comentários no grupo de modelos mistos: Você pode observar os pacotes de regressão espacial e de covariância espacial de David Clifford. O primeiro permite o ajuste de modelos mistos (gaussianos), nos quais é possível especificar a estrutura da matriz de covariância com muita flexibilidade (por exemplo, eu a usei para dados de linhagem). O pacote spatialCovariance usa regress para fornecer modelos mais elaborados que o AR1xAR1, mas pode ser aplicável. Talvez você precise se corresponder com o autor sobre como aplicá-lo ao seu problema exato.
John
1
se eu tiver uma chance, tentarei resolver o máximo possível disso, mas, francamente, talvez não consiga, tenho muito no meu prato. Examinar os pacotes sugeridos por David Clifford parece uma ótima idéia - talvez você possa resolver seu próprio problema dessa maneira ... Tenho certeza de que o modelo 1 pode ser concluído MCMCglmme tenho certeza de que (além de o spatialCovariancemencionado, com o qual não estou familiarizado), a única maneira de fazê-lo em R é definindo new corStructs - o que é possível, mas não trivial.
quer

Respostas:

4

Você pode ajustar esse modelo com o AD Model Builder. O AD Model Builder é um software gratuito para a construção de modelos não lineares gerais, incluindo modelos de efeitos aleatórios não lineares gerais. Assim, por exemplo, você poderia ajustar um modelo espacial binomial negativo, onde a média e a dispersão excessiva tinham uma estrutura ar (1) x ar (1). Criei o código para este exemplo e o ajustei aos dados. Se alguém estiver interessado, provavelmente é melhor discutir isso na lista em http://admb-project.org

Nota: Existe uma versão R do ADMB, mas os recursos disponíveis no pacote R são um subconjunto do software ADMB independente.

Para este exemplo, é mais fácil criar um arquivo ASCII com os dados, lê-lo no programa ADMB, executar o programa e, em seguida, ler as estimativas de parâmetro etc. de volta ao R para o que você quiser fazer.

Você deve entender que o ADMB não é uma coleção de pacotes, mas uma linguagem para escrever um software não-linear de estimativa de parâmetros. Como eu disse antes, é melhor discutir isso na lista do ADMB, onde todos sabem sobre o software. Depois que estiver pronto e você entender o modelo, poderá postar os resultados aqui. No entanto, aqui está um link para os códigos ML e REML que reuni para os dados do trigo.

http://lists.admb-project.org/pipermail/users/attachments/20111124/448923c8/attachment.zip

Dave Fournier
fonte
Existe uma interfase R para conectar-se ao AD Model Builder?
John
1

Model 0

ASReml-R

rcb0.asr <- asreml(yield~Variety, random=~Rep, data=nin89, na.method.X="include")
summary(rcb0.asr)
$call
asreml(fixed = yield ~ Variety, random = ~Rep, data = nin89, 
    na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 7.041475

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"

summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

> anova(rcb0.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   12001.6        242.054    <2e-16 ***
Variety       55    2387.5         48.152    0.7317    
residual (MS)         49.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb0.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb0.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432659
Rep_3 -0.8712739
Rep_4 -3.8515918

lme4

> rcb0.lmer <- lmer(yield~Variety+(1|Rep), data=nin89)
> print(rcb0.lmer, corr=FALSE)
Linear mixed model fit by REML 
Formula: yield ~ Variety + (1 | Rep) 
   Data: nin89 
  AIC  BIC logLik deviance REMLdev
 1334 1532 -608.9     1456    1218
Random effects:
 Groups   Name        Variance Std.Dev.
 Rep      (Intercept)  9.8829  3.1437  
 Residual             49.5824  7.0415  
Number of obs: 224, groups: Rep, 4

Fixed effects:
                  Estimate Std. Error t value
(Intercept)        29.4375     3.8556   7.635
VarietyBRULE       -3.3625     4.9791  -0.675
VarietyBUCKSKIN    -3.8750     4.9791  -0.778
VarietyCENTURA     -7.7875     4.9791  -1.564
VarietyCENTURK78    0.8625     4.9791   0.173
VarietyCHEYENNE    -1.3750     4.9791  -0.276
VarietyCODY        -8.2250     4.9791  -1.652
VarietyCOLT        -2.4375     4.9791  -0.490
VarietyGAGE        -4.9250     4.9791  -0.989
VarietyHOMESTEAD   -1.8000     4.9791  -0.362
VarietyKS831374    -5.3125     4.9791  -1.067
VarietyLANCER      -0.8750     4.9791  -0.176
VarietyLANCOTA     -2.8875     4.9791  -0.580
VarietyNE83404     -2.0500     4.9791  -0.412
VarietyNE83406     -5.1625     4.9791  -1.037
VarietyNE83407     -6.7500     4.9791  -1.356
VarietyNE83432     -9.7125     4.9791  -1.951
VarietyNE83498      0.6875     4.9791   0.138
VarietyNE83T12     -7.8750     4.9791  -1.582
VarietyNE84557     -8.9125     4.9791  -1.790
VarietyNE85556     -3.0500     4.9791  -0.613
VarietyNE85623     -7.7125     4.9791  -1.549
VarietyNE86482     -5.1500     4.9791  -1.034
VarietyNE86501      1.5000     4.9791   0.301
VarietyNE86503      3.2125     4.9791   0.645
VarietyNE86507     -5.6500     4.9791  -1.135
VarietyNE86509     -2.5875     4.9791  -0.520
VarietyNE86527     -7.4250     4.9791  -1.491
VarietyNE86582     -4.9000     4.9791  -0.984
VarietyNE86606      0.3250     4.9791   0.065
VarietyNE86607     -0.1125     4.9791  -0.023
VarietyNE86T666    -7.9000     4.9791  -1.587
VarietyNE87403     -4.3125     4.9791  -0.866
VarietyNE87408     -3.1375     4.9791  -0.630
VarietyNE87409     -8.0625     4.9791  -1.619
VarietyNE87446     -1.7625     4.9791  -0.354
VarietyNE87451     -4.8250     4.9791  -0.969
VarietyNE87457     -5.5250     4.9791  -1.110
VarietyNE87463     -3.5250     4.9791  -0.708
VarietyNE87499     -9.0250     4.9791  -1.813
VarietyNE87512     -6.1875     4.9791  -1.243
VarietyNE87513     -2.6250     4.9791  -0.527
VarietyNE87522     -4.4375     4.9791  -0.891
VarietyNE87612     -7.6375     4.9791  -1.534
VarietyNE87613     -0.0375     4.9791  -0.008
VarietyNE87615     -3.7500     4.9791  -0.753
VarietyNE87619      1.8250     4.9791   0.367
VarietyNE87627     -6.2125     4.9791  -1.248
VarietyNORKAN      -5.0250     4.9791  -1.009
VarietyREDLAND      1.0625     4.9791   0.213
VarietyROUGHRIDER  -8.2500     4.9791  -1.657
VarietySCOUT66     -1.9125     4.9791  -0.384
VarietySIOUXLAND    0.6750     4.9791   0.136
VarietyTAM107      -1.0375     4.9791  -0.208
VarietyTAM200      -8.2000     4.9791  -1.647
VarietyVONA        -5.8375     4.9791  -1.172
> anova(rcb0.lmer)
Analysis of Variance Table
        Df Sum Sq Mean Sq F value
Variety 55 2387.5  43.409  0.8755
> fixef(rcb0.lmer)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lmer)
$Rep
  (Intercept)
1   1.8798700
2   2.8436747
3  -0.8713991
4  -3.8521455

nlme

> rcb0.lme <- lme(yield~Variety, random=~1|Rep, data=na.omit(nin89))
> print(rcb0.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~1 | Rep
        (Intercept) Residual
StdDev:     3.14371 7.041475

Number of Observations: 224
Number of Groups: 4 
> anova(rcb0.lme)
            numDF denDF   F-value p-value
(Intercept)     1   165 242.05402  <.0001
Variety        55   165   0.87549  0.7119
> fixef(rcb0.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lme)
  (Intercept)
1   1.8795997
2   2.8432659
3  -0.8712739
4  -3.8515918
MYaseen208
fonte
1

Model 1

ASReml-R

> rcb.asr <- asreml(yield~Variety, random=~idv(Rep), rcov=~idv(units), data=nin89, na.method.X="include")
> summary(rcb.asr)
$call
asreml(fixed = yield ~ Variety, random = ~idv(Rep), rcov = ~idv(units), 
    data = nin89, na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 1

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var  9.882911  9.882911  8.792823 1.123975   Positive
R!variance   1.000000  1.000000        NA       NA      Fixed
R!units.var 49.582368 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"
> summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive
> anova(rcb.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   242.054        242.054    <2e-16 ***
Variety       55    48.152         48.152    0.7317    
residual (MS)        1.000                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432658
Rep_3 -0.8712738
Rep_4 -3.8515916

nlme

Veja o truque

> nin89$Int <- 1
> rcb.lme <- lme(yield~Variety, random=list(Int=pdIdent(~Rep-1)), data=na.omit(nin89))
> print(rcb.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~Rep - 1 | Int
 Structure: Multiple of an Identity
           Rep1    Rep2    Rep3    Rep4 Residual
StdDev: 3.14371 3.14371 3.14371 3.14371 7.041475

Number of Observations: 224
Number of Groups: 1 
> anova(rcb.lme)
            numDF denDF   F-value p-value
(Intercept)     1   168 242.05402  <.0001
Variety        55   168   0.87549  0.7121
> fixef(rcb.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb.lme)
    Rep1     Rep2       Rep3      Rep4
1 1.8796 2.843266 -0.8712739 -3.851592
MYaseen208
fonte
1

Model 2

ASReml-R

sp1.asr <- asreml(yield~Variety, rcov=~Column:ar1(Row), data=nin89, na.method.X="include")

> summary(sp1.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~Column:ar1(Row), data = nin89, 
    na.method.X = "include")

$loglik
[1] -408.1412

$nedf
[1] 168

$sigma
[1] 7.975127

$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp1.asr)$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained
> anova(sp1.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   24604.3         386.84 < 2.2e-16 ***
Variety       55    7974.4         125.38 2.048e-07 ***
residual (MS)         63.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp1.asr)$fixed
                        effect
Variety_ARAPAHOE     0.0000000
Variety_BRULE       -2.4048816
Variety_BUCKSKIN     7.8064972
Variety_CENTURA     -1.6997427
Variety_CENTURK78   -1.3829446
Variety_CHEYENNE    -1.1113084
Variety_CODY        -6.7461911
Variety_COLT        -1.7963394
Variety_GAGE        -3.4539524
Variety_HOMESTEAD   -5.5877510
Variety_KS831374    -0.8589476
Variety_LANCER      -2.8418476
Variety_LANCOTA     -5.9394801
Variety_NE83404     -3.4112613
Variety_NE83406     -1.9057358
Variety_NE83407     -3.2563922
Variety_NE83432     -5.4594311
Variety_NE83498      0.6446010
Variety_NE83T12     -4.0071361
Variety_NE84557     -4.2005181
Variety_NE85556      1.4836395
Variety_NE85623     -2.7617129
Variety_NE86482     -1.4309381
Variety_NE86501     -2.2287462
Variety_NE86503     -0.4557866
Variety_NE86507     -0.6983418
Variety_NE86509     -3.9215624
Variety_NE86527      0.5294386
Variety_NE86582     -5.4653632
Variety_NE86606     -0.7291575
Variety_NE86607     -0.1265536
Variety_NE86T666   -12.1437291
Variety_NE87403     -7.4623631
Variety_NE87408     -3.3586380
Variety_NE87409     -1.0360336
Variety_NE87446     -4.9030958
Variety_NE87451     -3.2836149
Variety_NE87457     -3.5244583
Variety_NE87463     -3.8427658
Variety_NE87499     -4.6298393
Variety_NE87512     -5.3760809
Variety_NE87513     -5.5656241
Variety_NE87522     -7.6500899
Variety_NE87612     -2.7225851
Variety_NE87613     -0.8793319
Variety_NE87615     -4.0089291
Variety_NE87619      0.7975626
Variety_NE87627    -10.1315147
Variety_NORKAN      -7.1804945
Variety_REDLAND      0.6753066
Variety_ROUGHRIDER  -0.9637487
Variety_SCOUT66      0.7088916
Variety_SIOUXLAND   -1.1998807
Variety_TAM107      -3.7160351
Variety_TAM200      -9.0340942
Variety_VONA        -2.7970689
(Intercept)         28.3487457

nlme

Trabalhando, ainda não descobri. Pode ser algo assim. Ainda não conseguia descobrir como fazer rcov=~Column:ar1(Row)comnlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))
MYaseen208
fonte
1

Model 3

ASReml-R

sp2.asr <- asreml(yield~Variety, rcov=~ar1(Column):ar1(Row), data=nin89, na.method.X="include")

> summary(sp2.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~ar1(Column):ar1(Row), 
    data = nin89, na.method.X = "include")

$loglik
[1] -399.3238

$nedf
[1] 168

$sigma
[1] 6.978728

$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp2.asr)$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained
> anova(sp2.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   16165.6         331.93 < 2.2e-16 ***
Variety       55    5961.7         122.41 4.866e-07 ***
residual (MS)         48.7                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp2.asr)$fixed
                         effect
Variety_ARAPAHOE     0.00000000
Variety_BRULE        0.03029321
Variety_BUCKSKIN     8.89207227
Variety_CENTURA     -0.68979639
Variety_CENTURK78    0.16461970
Variety_CHEYENNE     0.50267820
Variety_CODY        -3.26960093
Variety_COLT        -0.51826695
Variety_GAGE        -0.95824999
Variety_HOMESTEAD   -4.57873078
Variety_KS831374     0.27843476
Variety_LANCER      -2.95379384
Variety_LANCOTA     -4.67006598
Variety_NE83404     -1.32290865
Variety_NE83406     -1.66351994
Variety_NE83407     -2.64471830
Variety_NE83432     -4.42828427
Variety_NE83498      1.80418738
Variety_NE83T12     -2.11789109
Variety_NE84557     -2.34685080
Variety_NE85556      2.78001120
Variety_NE85623     -1.42164134
Variety_NE86482     -1.63334029
Variety_NE86501     -2.94339063
Variety_NE86503     -0.95747374
Variety_NE86507      0.46223383
Variety_NE86509     -3.27166458
Variety_NE86527      1.86588098
Variety_NE86582     -3.87940069
Variety_NE86606      0.22753741
Variety_NE86607      0.60702026
Variety_NE86T666   -10.27005825
Variety_NE87403     -7.43945904
Variety_NE87408     -3.10433009
Variety_NE87409      1.29746980
Variety_NE87446     -4.15943316
Variety_NE87451     -1.85324718
Variety_NE87457     -2.31156727
Variety_NE87463     -4.47086114
Variety_NE87499     -1.85909637
Variety_NE87512     -4.06473578
Variety_NE87513     -3.99604937
Variety_NE87522     -5.52109215
Variety_NE87612     -1.95543098
Variety_NE87613     -0.83160454
Variety_NE87615     -1.92104271
Variety_NE87619      2.98322047
Variety_NE87627     -7.33205188
Variety_NORKAN      -5.78418023
Variety_REDLAND      1.75249392
Variety_ROUGHRIDER  -0.97736288
Variety_SCOUT66      2.13126094
Variety_SIOUXLAND   -2.54195346
Variety_TAM107      -1.59083563
Variety_TAM200      -6.54229161
Variety_VONA        -1.52728371
(Intercept)         27.04285175

nlme

Trabalhando, ainda não descobri. Pode ser algo assim. Ainda não conseguia descobrir como fazer rcov=~ar1(Column):ar1(Row)comnlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))

Não consegui descobrir como encaixar os modelos 2 e 3 nlme. Estou trabalhando nisso e atualizarei a resposta quando terminar. Mas incluí a saída dos ASReml-Rmodelos 2 e 3 para fins de comparação. Kevin tem uma boa experiência em analisar esses modelos e Ben Bolker tem uma autoridade maravilhosa em modelos mistos. Espero que eles possam nos ajudar nos modelos 2 e 3.

MYaseen208
fonte