Eu tenho uma pergunta sobre o uso de uma variável de agrupamento em um modelo não linear. Como a função nls () não permite variáveis de fator, tenho me esforçado para descobrir se é possível testar o efeito de um fator no ajuste do modelo. Incluí um exemplo abaixo, no qual desejo ajustar um modelo de crescimento "sazonalizado por von Bertalanffy" a diferentes tratamentos de crescimento (mais comumente aplicados ao crescimento de peixes). Eu gostaria de testar o efeito do lago onde o peixe cresceu, bem como a comida fornecida (apenas um exemplo artificial). Estou familiarizado com uma solução alternativa para esse problema - a aplicação de um teste F comparando modelos adequados a dados agrupados vs. ajustes separados, conforme descrito por Chen et al. (1992) (ARSS - "Análise da soma residual dos quadrados"). Em outras palavras, para o exemplo abaixo,
Eu imagino que exista uma maneira mais simples de fazer isso no R usando o nlme (), mas estou tendo problemas. Primeiro de tudo, usando uma variável de agrupamento, os graus de liberdade são maiores do que eu obtenho com o ajuste de modelos separados. Segundo, não consigo aninhar variáveis de agrupamento - não vejo onde está o meu problema. Qualquer ajuda para usar o nlme ou outros métodos é muito apreciada. Abaixo está o código para o meu exemplo artificial:
###seasonalized von Bertalanffy growth model
soVBGF <- function(S.inf, k, age, age.0, age.s, c){
S.inf * (1-exp(-k*((age-age.0)+(c*sin(2*pi*(age-age.s))/2*pi)-(c*sin(2*pi*(age.0-age.s))/2*pi))))
}
###Make artificial data
food <- c("corn", "corn", "wheat", "wheat")
lake <- c("king", "queen", "king", "queen")
#cornking, cornqueen, wheatking, wheatqueen
S.inf <- c(140, 140, 130, 130)
k <- c(0.5, 0.6, 0.8, 0.9)
age.0 <- c(-0.1, -0.05, -0.12, -0.052)
age.s <- c(0.5, 0.5, 0.5, 0.5)
cs <- c(0.05, 0.1, 0.05, 0.1)
PARS <- data.frame(food=food, lake=lake, S.inf=S.inf, k=k, age.0=age.0, age.s=age.s, c=cs)
#make data
set.seed(3)
db <- c()
PCH <- NaN*seq(4)
COL <- NaN*seq(4)
for(i in seq(4)){
age <- runif(min=0.2, max=5, 100)
age <- age[order(age)]
size <- soVBGF(PARS$S.inf[i], PARS$k[i], age, PARS$age.0[i], PARS$age.s[i], PARS$c[i]) + rnorm(length(age), sd=3)
PCH[i] <- c(1,2)[which(levels(PARS$food) == PARS$food[i])]
COL[i] <- c(2,3)[which(levels(PARS$lake) == PARS$lake[i])]
db <- rbind(db, data.frame(age=age, size=size, food=PARS$food[i], lake=PARS$lake[i], pch=PCH[i], col=COL[i]))
}
#visualize data
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
###fit growth model
library(nlme)
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
#fit to pooled data ("small model")
fit0 <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values
)
summary(fit0)
#fit to each lake separatly ("large model")
fit.king <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="king"
)
summary(fit.king)
fit.queen <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="queen"
)
summary(fit.queen)
#analysis of residual sum of squares (F-test)
resid.small <- resid(fit0)
resid.big <- c(resid(fit.king),resid(fit.queen))
df.small <- summary(fit0)$df
df.big <- summary(fit.king)$df+summary(fit.queen)$df
F.value <- ((sum(resid.small^2)-sum(resid.big^2))/(df.big[1]-df.small[1])) / (sum(resid.big^2)/(df.big[2]))
P.value <- pf(F.value , (df.big[1]-df.small[1]), df.big[2], lower.tail = FALSE)
F.value; P.value
###plot models
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
legend("topleft", legend=c("soVGBF pooled", "soVGBF king", "soVGBF queen"), col=c(1,2,3), lwd=2)
#plot "small" model (pooled data)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100))
pred <- predict(fit0, tmp)
lines(tmp$age, pred, col=1, lwd=2)
#plot "large" model (seperate fits)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="king")
pred <- predict(fit.king, tmp)
lines(tmp$age, pred, col=2, lwd=2)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="queen")
pred <- predict(fit.queen, tmp)
lines(tmp$age, pred, col=3, lwd=2)
###Can this be done in one step using a grouping variable?
#with "lake" as grouping variable
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit1 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake,
start=starting.values
)
summary(fit1)
#similar residuals to the seperatly fitted models
sum(resid(fit.king)^2+resid(fit.queen)^2)
sum(resid(fit1)^2)
#but different degrees of freedom? (10 vs. 21?)
summary(fit.king)$df+summary(fit.queen)$df
AIC(fit1, fit0)
###I would also like to nest my grouping factors. This doesn't work...
#with "lake" and "food" as grouping variables
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit2 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake/food,
start=starting.values
)
Referência: Chen, Y., Jackson, DA e Harvey, HH, 1992. Uma comparação das funções de von Bertalanffy e polinomial na modelagem de dados de crescimento de peixes. 49, 6: 1228-1235.
fonte
Eu descobri que é possível codificar variáveis categóricas com nls (), simplesmente multiplicando vetores true / false em sua equação. Exemplo:
fonte