Gráfico cumulativo / cumulativo (ou “Visualizando uma curva de Lorenz”)

11

Não sei como são chamadas essas tramas e, portanto, dei um título estúpido a essa pergunta.

Digamos que eu tenha um conjunto de dados ordenado da seguinte maneira

4253  4262  4270  4383  4394  4476  4635  ...

Cada número corresponde à quantidade de postagens que um determinado usuário contribuiu para um site. Estou investigando empiricamente o fenômeno da "desigualdade de participação", conforme definido aqui .

Para facilitar a compreensão, eu gostaria de produzir um gráfico que permita ao leitor deduzir rapidamente declarações como "10% dos usuários contribuem com 50% dos dados". Provavelmente deve ser parecido com esse esboço de tinta reconhecidamente bastante ruim:

insira a descrição da imagem aqui

Eu não tenho idéia de como isso é chamado, portanto, não sei onde procurar. Além disso, se alguém tivesse uma implementação R, isso seria incrível.

wnstnsmth
fonte
6
A questão está muito bem colocada (e eu amo o esboço). Confira ecdfno Rpara um começo. O termo é "função de distribuição cumulativa empírica". Você também pode estar interessado em "gráficos de probabilidade" e "gráficos de QQ": são versões do ECDF mostrando os dados em diferentes escalas (não lineares).
whuber
7
Curva de Lorenz: consulte en.wikipedia.org/wiki/Lorenz_curve É fácil pesquisar nos círculos R.
Nick Cox
Eu conheço ecdfe já o usei antes, mas da maneira "clássica" que o eixo x mostra o número de postagens e o eixo y sua probabilidade. Eu não sei como fazer algo como acima.
precisa saber é o seguinte
3
@whuber Eu acho que "10% dos usuários contribuem com 50% dos dados" é mais uma questão da curva de Lorenz. Uma curva de Lorenz é um gráfico de PP.
Nick Cox
2
Dê uma olhada no pacote ineq no R para isso.
Metrics

Respostas:

6

Se você quiser fazer isso simplesmente com os Rcomandos básicos , os seguintes códigos podem ajudar.

Primeiro você lê os dados.

person<-rep(1:7)
data<-c(4253, 4262, 4270, 4383, 4394, 4476, 4635)

Então você pode ver a contribuição de cada usuário.

plot(person,data)
lines(person,data)

insira a descrição da imagem aqui

Você também pode ver quanto as duas, três, quatro, ..., sete pessoas contribuem.

cdata<-cumsum(data)    
plot(person,cdata)
lines(person,cdata)

insira a descrição da imagem aqui

Finalmente, você pode obter o gráfico desejado (em proporções nos dois eixos) pelos seguintes comandos:

plot(person/max(person),cdata/max(cdata),xlab="Top-contributing users",ylab="Data",col="red")
lines(person/max(person),cdata/max(cdata),col="red")

insira a descrição da imagem aqui

Eu rotulei os eixos como você queria. Pode fornecer uma visão clara de quanto percentual de dados está sendo contribuído por uma certa proporção de pessoas.

Blain Waan
fonte
3

Encontrei uma maneira de visualizar rapidamente a curva de Lorenz ggplot2, resultando em um gráfico mais estético e mais fácil de interpretar. Por esse último motivo, espelhei a curva de Lorenz na linha diagonal que resulta em uma forma mais intuitiva, se você me perguntar. Ele também contém linhas de anotação que devem facilitar a explicação do gráfico (por exemplo, "Os 5% principais usuários contribuintes representam 50% dos dados"). Atenção: Encontrar o local certo para a linha de anotação faz uso de uma heurística bastante idiota e pode não funcionar com um conjunto de dados menor.

Curva de Lorenz (modificada)

Dados de exemplo:

data <- data.frame(lco = 
                     c(338L, 6317L, 79L, 36L, 3634L, 8633L, 3231L, 27L, 173L, 5934L, 
                       4476L, 1604L, 340L, 723L, 260L, 7008L, 7968L, 3854L, 4011L, 1596L, 
                       1428L, 587L, 1595L, 32L, 277L, 5201L, 133L, 407L, 676L, 1874L, 
                       1700L, 843L, 237L, 4270L, 2404L, 530L, 305L, 9344L, 720L, 1806L, 
                       35L, 790L, 1383L, 5522L, 178L, 75L, 6219L, 121L, 923L, 1123L, 
                       102L, 70L, 50L, 119L, 445L, 464L, 182L, 244L, 1358L, 7840L, 661L, 
                       70L, 132L, 634L, 4262L, 1872L, 345L, 11L, 28L, 284L, 626L, 1033L, 
                       26L, 798L, 13L, 480L, 44L, 339L, 259L, 312L, 262L, 67L, 1359L, 
                       1835L, 13L, 189L, 292L, 2152L, 215L, 39L, 1131L, 1323L, 700L, 
                       3271L, 1622L, 4669L, 125L, 281L, 277L, 232L, 1111L, 8669L, 7233L, 
                       9363L, 400L, 502L, 1425L, 904L, 2924L, 927L, 31L, 1132L, 200L, 
                       17L, 7602L, 12365L, 258L, 16L, 223L, 55L, 11L, 785L, 493L, 4L, 
                       1161L, 393L, 791L, 30L, 568L, 386L, 75L, 1882L, 674L, 29L, 4217L, 
                       332L, 103L, 332L, 30L, 168L, 277L, 176L, 49L, 19L, 76L, 144L, 
                       145L, 65L, 52L, 391L, 25L, 104L, 484L, 20L, 12L, 188L, 5677L, 
                       19L, 273L, 424L, 281L, 458L, 50L, 255L, 898L, 840L, 872L, 573L, 
                       874L, 8L, 35L, 235L, 22L, 229L, 158L, 59L, 147L, 544L, 24L, 325L, 
                       15L, 3L, 1531L, 1014L, 43L, 35L, 2176L, 934L, 253L, 69L, 784L, 
                       352L, 188L, 27L, 1516L, 322L, 1394L, 7686L, 13L, 812L, 349L, 
                       779L, 77L, 941L, 104L, 82L, 93L, 1206L, 24L, 6159L, 131L, 99L, 
                       1310L, 27L, 520L, 327L, 350L, 42L, 102L, 25L, 14L, 42L, 33L, 
                       469L, 177L, 119L, 64L, 75L, 190L, 82L, 82L, 473L, 51L, 9L, 49L, 
                       41L, 221L, 1778L, 4188L, 4L, 86L, 39L, 93L, 35L, 44L, 227L, 636L, 
                       589L, 332L, 22L, 15L, 50L, 147L, 32L, 134L, 133L, 629L, 168L, 
                       69L, 747L, 34L, 20L, 552L, 8L, 54L, 28L, 1437L, 83L, 3225L, 776L, 
                       784L, 247L, 33L, 40L, 368L, 104L, 420L, 357L, 9L, 164L, 7L, 227L, 
                       142L, 33L, 91L, 78L, 175L, 194L, 294L, 433L, 52L, 7L, 372L, 29L, 
                       220L, 371L, 375L, 233L, 12L, 35L, 795L, 35L, 43L, 50L, 57L, 32L, 
                       162L, 124L, 160L, 52L, 132L, 131L, 50L, 117L, 145L, 33L, 83L, 
                       33L, 123L, 43L, 27L, 91L, 25L, 2116L, 51L, 509L, 603L, 267L, 
                       10L, 10L, 51L, 6028L, 99L, 597L, 53L, 131L, 1084L, 1222L, 153L, 
                       70L, 746L, 437L, 82L, 299L, 1682L, 21L, 24L, 973L, 207L, 55L, 
                       116L, 47L, 48L, 149L, 100L, 690L, 129L, 80L, 1143L, 103L, 50L, 
                       242L, 708L, 316L, 83L, 61L, 15L, 203L, 435L, 474L, 47L, 718L, 
                       21L, 33L, 27L, 15L, 53L, 97L, 6L, 39L, 59L, 255L, 51L, 15L, 20L, 
                       514L, 74L, 20L, 319L, 14L, 14L, 45L, 36L, 625L, 5534L, 43L, 590L, 
                       43L, 29L, 233L, 135L, 174L, 20L, 335L, 106L, 230L, 64L, 3551L, 
                       524L, 72L, 44L, 16L, 98L, 37L, 62L, 390L, 83L, 28L, 3L, 63L, 
                       32L, 124L, 56L, 149L, 11L, 153L, 661L, 15L, 25L, 49L, 626L, 141L, 
                       38L, 23L, 123L, 530L, 47L, 6L, 18L, 222L, 391L, 71L, 75L, 234L, 
                       142L, 45L, 439L, 675L, 14L, 53L, 19L, 100L, 51L, 147L, 10L, 141L, 
                       979L, 97L, 330L, 112L, 71L, 4L, 9L, 124L, 141L, 145L, 302L, 122L, 
                       435L, 50L, 81L, 99L, 330L, 84L, 41L, 227L, 4L, 37L, 5L, 99L, 
                       210L, 7L, 183L, 67L, 98L, 157L, 96L, 150L, 22L, 288L, 391L, 188L, 
                       54L, 56L, 49L, 618L, 160L, 631L, 9L, 355L, 56L, 119L, 37L, 36L, 
                       153L, 110L, 126L, 335L, 121L, 80L, 113L, 62L, 97L, 22L, 72L, 
                       1742L, 1007L, 11L, 121L, 27L, 62L, 823L, 56L, 40L, 26L, 69L, 
                       120L, 516L, 11L, 146L, 245L, 174L, 1648L, 105L, 123L, 17L, 2565L, 
                       138L, 200L, 46L, 130L, 189L, 87L, 191L, 143L, 76L, 702L, 79L, 
                       67L, 166L, 3487L, 88L, 395L, 283L, 140L, 535L, 198L, 64L, 1033L, 
                       376L, 180L, 14L, 32L, 441L, 361L, 520L, 62L, 247L, 10L, 24L, 
                       721L, 176L, 164L, 33L, 44L, 12L, 30L, 13L, 157L, 122L, 161L, 
                       45L, 34L, 538L, 74L, 14L, 19L, 15L, 1714L, 437L, 16L, 12L, 130L, 
                       25L, 93L, 9L, 15L, 81L, 889L, 27L, 195L, 5L, 233L, 113L, 356L, 
                       51L, 146L, 6822L, 65L, 166L, 45L, 18L, 295L, 196L, 145L, 256L, 
                       14L, 8L, 89L, 32L, 20L, 239L, 68L, 63L, 21L, 102L, 158L, 1138L, 
                       48L, 113L, 144L, 83L, 93L, 3L, 1032L, 45L, 36L, 68L, 146L, 370L, 
                       25L, 10L, 290L, 858L, 19L, 17L, 64L, 42L, 38L, 711L, 144L, 58L, 
                       144L, 1736L, 188L, 38L, 58L, 91L, 255L, 58L, 307L, 4L, 9L, 60L, 
                       14L, 13L, 118L, 1549L, 108L, 483L, 34L, 1471L, 13L, 16L, 76L, 
                       163L, 147L, 75L, 520L, 4L, 59L, 73L, 32L, 24L, 656L, 16L, 2655L, 
                       38L, 20L, 1011L, 85L, 592L, 91L, 883L, 5174L, 42L, 17L, 88L, 
                       21L, 61L, 33L, 1726L, 46L, 387L, 920L, 120L, 134L, 72L, 144L, 
                       1603L, 646L, 45L, 282L, 56L, 19L, 41L, 69L, 151L, 632L, 47L, 
                       48L, 126L, 114L, 119L, 144L, 949L, 67L, 144L, 27L, 61L, 70L, 
                       287L, 64L, 323L, 27L, 149L, 1914L, 20L, 1077L, 21L, 70L, 59L, 
                       123L, 537L, 131L, 1226L, 2908L, 8L, 133L, 42L, 175L, 100L, 162L, 
                       494L, 414L, 2618L, 33L, 93L, 48L, 3676L, 553L, 705L, 58L, 268L, 
                       141L, 284L, 98L, 135L, 13L, 49L, 792L, 128L, 172L, 236L, 221L, 
                       596L, 35L, 241L, 10L, 193L, 189L, 26L, 27L, 47L, 100L, 398L, 
                       21L, 26L, 86L, 147L, 3639L, 161L, 60L, 106L, 111L, 42L, 11L, 
                       654L, 21L, 129L, 1152L, 224L, 49L, 12L, 22L, 73L, 207L, 165L, 
                       113L, 12L, 1224L, 177L, 6L, 390L, 2747L, 23L, 46L, 1166L, 805L, 
                       20L, 130L, 46L, 110L, 16L, 88L, 652L, 61L, 86L, 16L, 804L, 41L, 
                       4383L, 511L, 126L, 549L, 23L, 45L, 80L, 162L, 127L, 700L, 43L, 
                       147L, 102L, 84L, 67L, 57L, 30L, 55L, 274L, 314L, 847L, 203L, 
                       322L, 8350L, 101L, 10L, 122L, 54L, 120L, 10L, 22L, 327L, 234L, 
                       56L, 998L, 409L, 131L, 2163L, 81L, 19L, 6675L, 7L, 2182L, 1136L, 
                       71L, 15L, 286L, 133L, 132L, 37L, 144L, 28L, 392L, 870L, 312L, 
                       190L, 135L, 16L, 6L, 153L, 38L, 62L, 2710L, 36L, 61L, 37L, 88L, 
                       375L, 88L, 131L, 73L, 212L, 918L, 185L, 53L, 143L, 69L, 2231L, 
                       54L, 23L, 220L, 195L, 468L, 2009L, 364L, 54L, 277L, 1547L, 240L, 
                       1700L, 1533L, 374L, 363L, 35L, 97L, 19L, 87L, 67L, 22L, 267L, 
                       16L, 11L, 35L, 460L, 44L, 58L, 26L, 13L, 172L, 114L, 272L, 64L, 
                       254L, 49L, 440L, 329L, 48L, 93L, 10L, 70L, 17L, 120L, 5229L, 
                       118L, 133L, 43L, 2419L, 207L, 102L, 90L, 127L, 3939L, 14L, 5L, 
                       552L, 425L, 656L, 511L, 170L, 396L, 177L, 3680L, 111L, 21L, 320L, 
                       367L, 51L, 672L, 1675L, 59L, 91L, 281L, 113L, 19L, 37L, 65L, 
                       288L, 27L, 149L, 61L, 63L, 75L, 165L, 90L, 9L, 12L, 82L, 111L, 
                       157L))

Código:

# lorenz curve of user contribution
library(ineq)
library(ggplot2)
library(scales)
library(grid)
# compute lorenz curve
lcolc <- Lc(data$lco)
# bring lorenz curve in another format easily readable by ggplot2
# namely reverse the L column so that lorenz curve is mirrored on diagonal
# p stays p (the diagonal)
# Uprob contains the indices of the L's, but we need percentiles
lcdf <- data.frame(L = rev(1-lcolc$L), p = lcolc$p, Uprob = c(1:length(lcolc$L)/length(lcolc$L)))

# basic plot with the diagonal line and the L line
p <- ggplot(lcdf, aes(x = Uprob, y = L)) + geom_line(colour = hcl(h=15, l=65, c=100)) + geom_line(aes(x = p, y = p))
# compute annotation lines at 50 percent L (uses a heuristic)
index  <- which(lcdf$L >= 0.499 & lcdf$L <= 0.501)[1]

ypos <- lcdf$L[index]
yposs <- c(0,ypos)
xpos <- index/length(lcdf$L)
xposs <- c(0,xpos)
ypositions <- data.frame(x = xposs, y = c(ypos,ypos))
xpositions <- data.frame(x = c(xpos,xpos), y = yposs)
# add annotation line
p <- p + geom_line(data = ypositions, aes(x = x, y = y), 
                   linetype="dashed") + geom_line(data = xpositions, aes(x = x, y = y), 
                                                  linetype="dashed") 
# set axes and labels (namely insert custom breaks in scales)
p <- p + scale_x_continuous(breaks=c(0, xpos,0.25,0.5,0.75,1),
                            labels = percent_format()) + scale_y_continuous(
                                                                            labels = percent_format())
# add minimal theme
p <- p + theme_minimal() + xlab("Percentage of objects") + ylab("Percentage of events") 
# customize theme
p <- p + theme(plot.margin = unit(c(0.5,1,1,1), "cm"), 
               axis.title.x = element_text(vjust=-1),
               axis.title.y = element_text(angle=90, vjust=0),
               panel.grid.minor = element_blank(),
               plot.background = element_rect(fill = rgb(0.99,0.99,0.99), linetype=0)) 
# print plot
p
wnstnsmth
fonte
3
Na literatura, eu sei que a convenção majoritária é de longe o inverso disso aqui, ou seja, trocar eixos para que a curva seja convexa para baixo. Desigualdade é uma palavra-chave aqui, especialmente para encontrar trabalhos mais detalhados, especialmente para resumir essa curva, por exemplo, no estudo de renda em economia.
Nick Cox
-2

Mais duas maneiras de fazer isso, como eu estava trabalhando recentemente para ensaios clínicos de vacinas:

1.Use Hmisc Ecdf. Isso é simples e detalha, embora seja um pouco difícil descobrir detalhes sobre a alteração de diferentes elementos do gráfico.

2.Calcular a distribuição cumulativa e, em seguida, 1-acumulativo é cumulativo reverso. Plote o inverso usando ggplot2 usando geom_step se você gosta de uma função de etapa no gráfico. A função abaixo usaria ecdf da base r para fornecer distribuição cumulativa e, em seguida, 1 acumulativa:

     rcdf <- function (x) {
     cdf <- ecdf(x)
     y <- cdf(x)
    xrcdf <- 1-y
      }

acima, o rcdf é uma função definida pelo usuário, definida usando ecdf.

AAnand
fonte
Não tão. A curva de Lorenz não é o ecdf ou seu complemento. Os dois eixos para a curva de Lorenz são probabilidades cumulativas; no caso do ecdf, apenas um é.
Nick Cox
A resposta de @wnstnsmth fornece um conjunto de dados e um código. Se você tentar seu código com os dados dele, obterá objetos bem diferentes.
Nick Cox