Estou reproduzindo um exemplo dos modelos Generalizado, Linear e Misto . Meu MWE está abaixo:
Dilution <- c(1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4)
NoofPlates <- rep(x=5, times=10)
NoPositive <- c(0, 0, 2, 2, 3, 4, 5, 5, 5, 5)
Data <- data.frame(Dilution, NoofPlates, NoPositive)
fm1 <- glm(formula=NoPositive/NoofPlates~log(Dilution), family=binomial("logit"), data=Data)
summary(object=fm1)
Resultado
Call:
glm(formula = NoPositive/NoofPlates ~ log(Dilution), family = binomial("logit"),
data = Data)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.38326 -0.20019 0.00871 0.15607 0.48505
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.174 2.800 1.491 0.136
log(Dilution) 1.623 1.022 1.587 0.112
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 8.24241 on 9 degrees of freedom
Residual deviance: 0.64658 on 8 degrees of freedom
AIC: 6.8563
Number of Fisher Scoring iterations: 6
Código
anova(object=fm1, test="Chisq")
Resultado
Analysis of Deviance Table
Model: binomial, link: logit
Response: NoPositive/NoofPlates
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 9 8.2424
log(Dilution) 1 7.5958 8 0.6466 0.00585 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Código
library(aod)
wald.test(b=coef(object=fm1), Sigma=vcov(object=fm1), Terms=2)
Resultado
Wald test:
----------
Chi-squared test:
X2 = 2.5, df = 1, P(> X2) = 0.11
Os coeficientes estimados são perfeitamente compatíveis com os resultados apresentados no livro, mas os SE estão distantes. Com base no teste LRT, a inclinação é significativa, mas com base no coeficiente de inclinação de Wald e do teste Z é insignificante. Gostaria de saber se sinto falta de algo básico. Agradeço antecipadamente por sua ajuda.
r
logistic
generalized-linear-model
likelihood-ratio
z-test
MYaseen208
fonte
fonte
Respostas:
O principal problema é que, se você usar a taxa como sua variável de resposta, deverá usar o
weights
argumento Você deve ter ignorado um aviso sobre "sucessos não inteiros em um binômio glm" ...aod::wald.test()
summary()
Os intervalos de confiança de Wald x perfil também são moderadamente diferentes, mas se os ICs [mostrados abaixo] de (0,7,2,5) (Wald) e (0,9, 2,75) (LRT) são praticamente diferentes, depende da situação específica.
Wald:
Perfil:
fonte