Suponha que eu tenha respostas bivariadas com correlação significativa. Estou tentando comparar as duas maneiras de modelar esses resultados. Uma maneira é modelar a diferença entre os dois resultados: Outra maneira é usar ou modelá-los: ( y i j = β 0 + tempo + X ′ β )
gls
gee
Aqui está um exemplo foo:
#create foo data frame
require(mvtnorm)
require(reshape)
set.seed(123456)
sigma <- matrix(c(4,2,2,3), ncol=2)
y <- rmvnorm(n=500, mean=c(1,2), sigma=sigma)
cor(y)
x1<-rnorm(500)
x2<-rbinom(500,1,0.4)
df.wide<-data.frame(id=seq(1,500,1),y1=y[,1],y2=y[,2],x1,x2)
df.long<-reshape(df.wide,idvar="id",varying=list(2:3),v.names="y",direction="long")
df.long<-df.long[order(df.long$id),]
df.wide$diff_y<-df.wide$y2-df.wide$y1
#regressions
fit1<-lm(diff_y~x1+x2,data=df.wide)
fit2<-lm(y~time+x1+x2,data=df.long)
fit3<-gls(y~time+x1+x2,data=df.long, correlation = corAR1(form = ~ 1 | time))
Qual é a diferença fundamental entre fit1
e fit2
? E entre fit2
e fit3
, dado que eles são tão próximos dos valores e estimativas de ?
r
regression
model-selection
David Z
fonte
fonte
Holland, Paul & Donald Rubin. 1983. On Lord’s Paradox. In Principles of modern psychological measurement: A festchrift for Frederic M. Lord edited by Wainer, Howard & Samuel Messick pgs:3-25. Lawrence Erlbaum Associates. Hillsdale, NJ.
Respostas:
Primeiro, apresentarei ainda um quarto modelo para a discussão em minha resposta:
Parte 0
A diferença entre o ajuste1 e o ajuste1.5 é melhor resumida como a diferença entre uma diferença restrita e uma diferença ideal.
Parte 2
Então, qual é a diferença entre os modelos fit2 e fit3 ... na verdade, muito pouco. O modelo fit3 é responsável pela correlação em termos de erro, mas isso altera apenas o processo de estimativa e, portanto, as diferenças entre as duas saídas do modelo serão mínimas (além do fato de o fit3 estimar o fator autorregressivo).
Parte 2.5
E vou incluir mais um modelo nesta discussão
fonte