Perguntas com a marcação «r-squared»

19
É uma ponderada

Estimei um modelo linear robusto Rcom pesos MM, usando o rlm()pacote MASS. `R`` não fornece um valor de para o modelo, mas eu gostaria de ter um se for uma quantidade significativa. Também estou interessado em saber se existe algum significado em ter um valor que pesa a variação total e residual da...

18
Será -squared ter um -valor?

Parece que me confundi tentando entender se um valor de quartzo também tem um valor- .rrrppp Pelo que entendi, na correlação linear com um conjunto de pontos de dados pode ter um valor que varia de a e esse valor, seja o que for, pode ter um valor- que mostra se é significativamente diferente de...

18
Qual é o valor "

Qual é o valor de dado no resumo de um modelo de coxph em R? Por exemplo,R2R2R^2 Rsquare= 0.186 (max possible= 0.991 ) Eu tolamente incluí um manuscrito como valor e o revisor saltou dizendo que não estava ciente de um análogo da estatística a partir da regressão linear clássica que está sendo...

15
Armadilhas a evitar ao transformar dados?

Consegui uma forte relação linear entre minha variável e Y após transformar duplamente a resposta. O modelo era Y ∼ X, mas eu o transformei em √XXXYYYY∼XY∼XY\sim X melhorarR20,19-0,76.YX−−√∼X−−√YX∼X\sqrt{\frac{Y}{X}}\sim \sqrt{X}R2R2R^2 Claramente fiz uma cirurgia decente sobre esse...

15
Como escolher entre os diferentes Ajustado

Tenho em mente as fórmulas ajustadas ao quadrado R propostas por: Ezequiel (1930), que acredito ser o atualmente usado no SPSS. R2adjusted=1−(N−1)(N−p−1)(1−R2)Radjusted2=1−(N−1)(N−p−1)(1−R2)R^2_{\rm adjusted} = 1 - \frac{(N-1)}{(N-p-1)} (1-R^2) Olkin e Pratt (1958)...

15
Como obter um R-quadrado para um ajuste menor?

Como calcular a estatística do quadrado R ( r2r2r^2 ) em R para loesse / ou predictsaída da função? Por exemplo para esses dados: cars.lo <- loess(dist ~ speed, cars) cars.lp <- predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE) cars.lppossui duas matrizes fitpara modelo e...

14
Por que ? (Uma regressão linear variável)

Nota: = soma dos quadrados total, = soma dos erros quadrados e = soma dos quadrados por regressão. A equação no título é frequentemente escrita como:SSTSSTSSTSSESSESSESSRSSRSSR ∑i=1n(yi−y¯)2=∑i=1n(yi−y^i)2+∑i=1n(y^i−y¯)2∑i=1n(yi−y¯)2=∑i=1n(yi−y^i)2+∑i=1n(y^i−y¯)2\sum_{i=1}^n (y_i-\bar...