exclusão no BST

// C++ program to demonstrate 
// delete operation in binary
// search tree
#include <bits/stdc++.h>
using namespace std;

struct node {
    int key;
    struct node *left, *right;
};

// A utility function to create a new BST node
struct node* newNode(int item)
{
    struct node* temp
        = (struct node*)malloc(sizeof(struct node));
    temp->key = item;
    temp->left = temp->right = NULL;
    return temp;
}

// A utility function to do 
// inorder traversal of BST
void inorder(struct node* root)
{
    if (root != NULL) {
        inorder(root->left);
        cout << root->key;
        inorder(root->right);
    }
}

/* A utility function to 
insert a new node with given key in
 * BST */
struct node* insert(struct node* node, int key)
{
    /* If the tree is empty, return a new node */
    if (node == NULL)
        return newNode(key);

    /* Otherwise, recur down the tree */
    if (key < node->key)
        node->left = insert(node->left, key);
    else
        node->right = insert(node->right, key);

    /* return the (unchanged) node pointer */
    return node;
}

/* Given a non-empty binary search tree, return the node
with minimum key value found in that tree. Note that the
entire tree does not need to be searched. */
struct node* minValueNode(struct node* node)
{
    struct node* current = node;

    /* loop down to find the leftmost leaf */
    while (current && current->left != NULL)
        current = current->left;

    return current;
}

/* Given a binary search tree and a key, this function
deletes the key and returns the new root */
struct node* deleteNode(struct node* root, int key)
{
    // base case
    if (root == NULL)
        return root;

    // If the key to be deleted is 
    // smaller than the root's
    // key, then it lies in left subtree
    if (key < root->key)
        root->left = deleteNode(root->left, key);

    // If the key to be deleted is
    // greater than the root's
    // key, then it lies in right subtree
    else if (key > root->key)
        root->right = deleteNode(root->right, key);

    // if key is same as root's key, then This is the node
    // to be deleted
    else {
        // node has no child
        if (root->left==NULL and root->right==NULL)
            return NULL;
      
        // node with only one child or no child
        else if (root->left == NULL) {
            struct node* temp = root->right;
            free(root);
            return temp;
        }
        else if (root->right == NULL) {
            struct node* temp = root->left;
            free(root);
            return temp;
        }

        // node with two children: Get the inorder successor
        // (smallest in the right subtree)
        struct node* temp = minValueNode(root->right);

        // Copy the inorder successor's content to this node
        root->key = temp->key;

        // Delete the inorder successor
        root->right = deleteNode(root->right, temp->key);
    }
    return root;
}

// Driver Code
int main()
{
    /* Let us create following BST
            50
        /     \
        30     70
        / \ / \
    20 40 60 80 */
    struct node* root = NULL;
    root = insert(root, 50);
    root = insert(root, 30);
    root = insert(root, 20);
    root = insert(root, 40);
    root = insert(root, 70);
    root = insert(root, 60);
    root = insert(root, 80);

    cout << "Inorder traversal of the given tree \n";
    inorder(root);

    cout << "\nDelete 20\n";
    root = deleteNode(root, 20);
    cout << "Inorder traversal of the modified tree \n";
    inorder(root);

    cout << "\nDelete 30\n";
    root = deleteNode(root, 30);
    cout << "Inorder traversal of the modified tree \n";
    inorder(root);

    cout << "\nDelete 50\n";
    root = deleteNode(root, 50);
    cout << "Inorder traversal of the modified tree \n";
    inorder(root);

    return 0;
}

// This code is contributed by shivanisinghss2110
Easy Elk