Aprendizador Tensorflow TensorLe

tf.keras.callbacks.LearningRateScheduler(
    schedule, verbose=0)

# This function keeps the initial learning rate for the first ten epochs
# and decreases it exponentially after that.

def scheduler(epoch, lr):
  if epoch < 10:
    return lr
  else:
    return lr * tf.math.exp(-0.1)

model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
model.compile(tf.keras.optimizers.SGD(), loss='mse')

callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
                    epochs=15, callbacks=[callback], verbose=0)
Shanti