Fui informado de que o custo da inferência de tipo em uma linguagem funcional como o OCaml pode ser muito alto. A alegação é que existe uma sequência de expressões que, para cada expressão, o comprimento do tipo correspondente é exponencial no comprimento da expressão.
Eu inventei a sequência abaixo. Minha pergunta é: você conhece uma sequência com expressões mais concisas que alcança os mesmos tipos?
# fun a -> a;;
- : 'a -> 'a = <fun>
# fun b a -> b a;;
- : ('a -> 'b) -> 'a -> 'b = <fun>
# fun c b a -> c b (b a);;
- : (('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'c = <fun>
# fun d c b a -> d c b (c b (b a));;
- : ((('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'c -> 'd) ->
(('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'd
= <fun>
# fun e d c b a -> e d c b (d c b (c b (b a)));;
- : (((('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'c -> 'd) ->
(('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'd -> 'e) ->
((('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'c -> 'd) ->
(('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'e
= <fun>
# fun f e d c b a -> f e d c b (e d c b (d c b (c b (b a))));;
- : ((((('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'c -> 'd) ->
(('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'd -> 'e) ->
((('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'c -> 'd) ->
(('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'e -> 'f) ->
(((('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'c -> 'd) ->
(('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'd -> 'e) ->
((('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'c -> 'd) ->
(('a -> 'b) -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'f
= <fun>
->
operador), você pode fazer um crescimento exponencial (uma árvore de Fibonacci).