Alguns de nós lemos o artigo de Michael Nielsen sobre uma abordagem geométrica para usar limites quânticos inferiores (em resumo, a construção de uma métrica de Finsler na modo que a distância geodésica de a um elemento seja um limite inferior no número de portas em um circuito quântico que calcula ).
Fiquei me perguntando se havia exemplos concretos de problemas em que esse programa levava a um limite inferior que chegava perto, correspondia ou superava os limites inferiores anteriores obtidos por outros meios?
quantum-computing
Suresh Venkat
fonte
fonte
Respostas:
Não é exatamente o que você está procurando, eu sei, mas a geodésica foi usada para provar taxas ideais de transferência de estado nas cadeias de spin Ising (consulte arXiv: 0705.0378 ). Não tenho certeza de como isso está relacionado à abordagem da Nielsen, pois ainda não li esse artigo em particular, mas lembro-me de pensar que esse foi um resultado interessante quando foi publicado. Basicamente, esse é o tempo mínimo para transferir um estado quântico de uma extremidade de uma matriz linear de qubits para a outra. É um problema muito simples, mas no artigo acima eles mostram que a transferência pode ser alcançada significativamente mais rapidamente do que se pensava anteriormente (embora, é claro, ainda exista uma escala linear, com a aceleração na constante).
fonte