Quais são as distribuições no quadrante k-dimensional positivo com matriz de covariância parametrizável?

12

Após a pergunta de zzk sobre seu problema com simulações negativas, estou me perguntando quais são as famílias parametrizadas de distribuições no quadrante k-dimensional positivo, R k +, para o qual a matriz de covariância Σ pode ser definida.R+kΣ

Como discutido com ZZK , partindo de uma distribuição em R+k e aplicando a transformar linear XΣ1/2(Xμ)+μ não funciona.

Xi'an
fonte

Respostas:

6

Suponha que tenhamos um vetor aleatório normal multivariado com μ R k e k × k matriz definida positiva simétrica de posição completa Σ = ( σ i j ) .

(logX1,,logXk)N(μ,Σ),
μRkk×kΣ=(σij)

Para o lognormal , não é difícil provar que m i : = E [ X i ] = e μ i + σ i i / 2(X1,,Xk)c i j : = Cov [ X i , X j ] = m i

mi:=E[Xi]=eμi+σii/2,i=1,,k,
cij:=Cov[Xi,Xj]=mimj(eσij1),i,j=1,,k,

e segue-se que .cij>mimj

Portanto, podemos fazer a pergunta inversa: dado e k × k matriz definida positiva simétrica C = ( c i j ) , satisfazendo c i j > - m i m j , se deixarmos μ i = log m i - 1m=(m1,,mk)R+kk×kC=(cij)cij>mimjσ i j = log ( c i j

μi=logmi12log(ciimi2+1),i=1,,k,
teremos um vetor lognormal com os meios e covariâncias prescritos.
σij=log(cijmimj+1),i,j=1,,k,

A restrição em e m é equivalente à condição natural E [ X i X j ] > 0 .CmE[XiXj]>0

zen
fonte
Ótimo, Paulo! Você tem uma solução funcional e a condição adequada na matriz de covariância, que também responde a essa pergunta . Log-normais são mais úteis que gammas, no final.
Xian
3

Na verdade, tenho uma solução definitivamente para pedestres.

  1. Comece com e escolha os dois parâmetros para ajustar os valores de E [ X 1 ] , var ( X 1 ) .X1Ga(α11,β1)E[X1]var(X1)
  2. Tome e escolha os três parâmetros para ajustar os valores de E [ X 2 ] , var ( X 2 ) e cov ( X 1 , X 2 ) .X2|X1Ga(α21X1+α22,β2)E[X2]var(X2)cov(X1,X2)
  3. Tome e escolha os quatro parâmetros para ajustar os valores de E [ X 3 ] , var ( X 3 ) , cov ( X 1 , X 3 ) e cov ( X 2 , XX3|X1,X2Ga(α31X1+α32X2+α33,β3)E[X3]var(X3)cov(X1,X3) .cov(X2,X3)

e assim por diante ... No entanto, dadas as restrições sobre os parâmetros e a natureza não linear das equações de momento, pode ser que alguns conjuntos de momentos correspondam a nenhum conjunto aceitável de parâmetros.

Por exemplo, quando , termino com o sistema de equações β 1 = μ 1 / σ 2 1k=2

β1=μ1/σ12,α11μ1β1=0

α22=μ2β2α21μ1,α21=(σ12+μ1μ2μ2)σ12+μ12μ1β2
(σ12+μ1μ2μ2)2(σ12+μ12μ1)2σ12+μ2β2=σ22.
Running an R code with arbitrary (and a priori acceptable) values for μ and Σ led to many cases with no solution. Again, this does not mean much because correlation matrices for distributions on R+2 may have stronger restrictions that a mere positive determinant.

update (04/04): deinst rephrased this question as a new question on the math forum.

Xi'an
fonte
1
One way of slighly extending this is to consider the natural exponential family
f(X|θ)=h(x)eθTXA(θ).
Then the mean and covariance are the gradient and Hessian of A. If h is a polynomial (with real exponents > -1) then A is the log of a polynomial (with real exponents), and the variance and Hessian are rational functions. I think this gives enough freedom to represent any mean and covariance matrix.
deinst
@deinst: (+1) Do you have an example where this exponential family representation can be exploited straightforwardly?
Xi'an
2
Maybe I don't quite understand the problem. But, consider a bivariate random vector (X,Y) with the same marginal F with full support on R+ and having mean 0<μ<. How can such a bivariate distribution have correlation ρ close to -1, for example? Heuristically, though I haven't carried this out, it seems that if P(X>2μ)>0, then a contradiction regarding the support must arise. No?
cardinal
1
There are certainly constraints on the covariance matrix Σ when the support is R+k, covered via the Stieltjes moment condition. Anyway, I do not see why a correlation close to -1 is excluded a priori.
Xi'an
2
Right, this is related to what I was getting at. Regarding the correlation, consider my example. If X and Y have the same marginal F with mean μ and a correlation of exactly -1 and P(X>2μ)>0, what must the value of Y be for all such realizations of X? (+1 on both question and answer. I like this.)
cardinal
2

OK, this is a response to Xi'an's comment. It is too long and has to much TeX to be a comfortable comment. Caveat Lector: It is virtually certain that I have made an algebra mistake. This does not seem to be quite as flexible as I first thought.

Let us create a family of distributions in R+3 of the form

f(x|θ)=h(x)eθTxA(θ)
Let x=(x,y,z) and θ=(θ1,θ2,θ3). Let
h(x)=cx1e11x2e21x3e31+dx1f11x2f21x3f31
be a two term polynomial where ei,fi are real numbers greater than 0 for all i. Then we find that
A(θ)=log(cΓ(e1)θ1e1Γ(e2)θ2e2Γ(e3)θ3e3+dΓ(f1)θ1f1Γ(f2)θ2f2Γ(f3)θ3f3).

Now, for convenience let us define

c=cΓ(e1)Γ(e2)Γ(e2)θ1f1θ2f2θ3f3
and
d=dΓ(f1)Γ(f2)Γ(f2)θ1e1θ2e2θ3e3

Now, as the mean of our distribution is the gradient of A, we have μX=e1c+f1dθ1(c+d), μY=e2c+f2dθ2(c+d), and μZ=e3c+f3dθ3(c+d). And as the covariance is the Hessian of A, we have

σX2=(e1c+f1d)(c+d)+(e1f1)2cdθ12(c+d)2
and
Cov(X,Y)=(e1f1)(e2f2)cdθ1θ2(c+d)
(the other terms of the covariance matrix obtained by changing subscripts in the obvious way).

This does not seem to be quite enough flexibility to get any covariance matrix. I need to try another term in the polynomial (but I suspect that also may not work (obviously I need to think about this more)).

deinst
fonte
Four parameters (θ1,θ2,θ3,c) for five constraints...?
Xi'an
@xian There are the 6 exponents ei and fi as well.
deinst
Estou um pouco confuso: você não processou os expoentes como parâmetros da família exponencial. Mas, de fato, você pode alterar esses poderes conforme desejar para acertar as equações dos 9 momentos.
Xian
@Xi'an You are correct, I did not process them as parameters of the exponential family. Doing so would have made the family no longer a natural family, and including them would have just muddled the algebra for comuting the moment equations (which was muddled enough to begin with).
deinst