Definição: Redução de Karp
Uma linguagem A
Definição: Redução de Levin
Um problema pesquisa V Uma
⟨ X , y ⟩ ∈ V Um⟹⟨ F ( x ) , g ( x , y ) ⟩ ∈ V B
⟨x,y⟩∈VA⟹⟨f(x),g(x,y)⟩∈VB ,⟨ F ( x ) , z ⟩ ∈ V B⟹⟨ X , h ( x , z ) ⟩ ∈ V Um
⟨f(x),z⟩∈VB⟹⟨x,h(x,z)⟩∈VA
Essas reduções são equivalentes?
Eu acho que as duas definições são equivalentes. Para quaisquer dois N P
Aqui está a minha prova:
Deixe- x e ¯ x haver casos arbitrárias de um tempo x ' ser que de B . Suponha V A e V B são verificadores de A e B . Deixe- y e ¯ y ser certificados arbitrárias de x e ¯ x de acordo com V A . Deixe- z ser que de x ' de acordo com V B .
Construa novos verificadores V ′ A e V ′ B com novos certificados y ′ e z ′ :
V ′ A ( x , y ′ ) :
- Y ' = ⟨ 0 , ¯ x , ¯ y ⟩ : Se f ( x ) ≠ f ( ¯ x ) , rejeitar. Caso contrário, imprima V A ( ¯ x , ¯ y ) .
y′=⟨0,x¯¯¯,y¯¯¯⟩ f(x)≠f(x¯¯¯) VA(x¯¯¯,y¯¯¯) - Y ' = ⟨ 1 , z ⟩ : Saída V B ( f ( x ) , z ) .
y′=⟨1,z⟩ VB(f(x),z)
V ′ B ( x ′ , z ′ ) :
Z ' = ⟨ 0 , z ⟩ : Saída V B ( x ' , z ) .
z′=⟨0,z⟩ VB(x′,z) Z ' = ⟨ 1 , x , y ⟩ : Se X ' ≠ f ( x ) , rejeitar. Caso contrário, imprima V A ( x , y ) .
z′=⟨1,x,y⟩ x′≠f(x) VA(x,y)
As funções computáveis em tempo polinomial g e h são definidas como abaixo:
g ( x , y ′ )
y′=⟨0,¯x,¯y⟩
y′=⟨0,x¯¯¯,y¯¯¯⟩ : Output ⟨1,¯x,¯y⟩⟨1,x¯¯¯,y¯¯¯⟩ .y′=⟨1,z⟩
y′=⟨1,z⟩ : Output ⟨0,z⟩⟨0,z⟩ .
h(x′,z′)
z′=⟨0,z⟩
z′=⟨0,z⟩ : Output ⟨1,z⟩⟨1,z⟩ .z′=⟨1,x,y⟩
z′=⟨1,x,y⟩ : Output ⟨0,x,y⟩⟨0,x,y⟩ .
Let Yx
(This is derived from the accepting language of V′A
Now let x′=f(x)
Respostas:
No. First note that Levin reduction only makes sense with respect to classes which certificate has a meaning, e.g. NPNP while Karp reduction is general. The word "certificate" for a problem makes sense only when a verifier is fixed. Levin's reduction assumes that the verifiers are fixed. You cannot change the verifiers. (In the following I assume that certificate verifiers are fixed as required by definition of Levin reduction.)
Second, Levin reduction means that one can find the certificate for one from the certificate for the other. It is true that the well-known Karp reductions between natural problems turn out to be Levin reduction but this does not need to be true in general.
If we can reduce instances of a problem AA to problem BB it doesn't mean we have a way of computing a certificate for one from a certificate for the other.
For this to be true we need the fact that a certificate search problem corresponding to the decision problem is polynomial time reducible to the decision problem. This is true for NP-completeNP-complete problems but not known to be true generally even for NPNP problems.
fonte
A quick counterexample for your proof: suppose that x1,x2∈L1, f(x1)=f(x2)∈L2, and w is a valid certificate for x1 but not for x2
M′1(x1,⟨0,w⟩)=M1(x1,w)=1
M′1(x2,⟨0,w⟩)=M1(x2,w)=0
By definition g(x1,⟨0,w⟩)=⟨1,x1,w⟩
f(x1)=f(x2) so M′2(f(x2),⟨1,x1,w⟩))=M1(x1,w)=1 so ⟨1,x1,w⟩ is a valid certificate for f(x2) but
h(f(x2),⟨1,x1,w⟩)=⟨0,w⟩ which is not a valid certificate for x2
fonte