Suponha que você tenha uma matriz de tamanho contendo números inteiros de a , inclusive, com exatamente cinco repetidos. Preciso propor um algoritmo que possa encontrar os números repetidos em tempo. Pela minha vida, não consigo pensar em nada. Eu acho que a classificação, na melhor das hipóteses, seria ? Atravessar a matriz seria , resultando em . No entanto, não tenho muita certeza se a classificação seria necessária, pois já vi algumas coisas complicadas com lista vinculada, filas, pilhas, etc.
algorithms
arrays
searching
darylnak
fonte
fonte
Respostas:
Você pode criar uma matriz adicional de tamanho . Inicialmente, defina todos os elementos da matriz como . Em seguida, faça um loop pela matriz de entrada e aumente em 1 para cada . Depois disso, basta verificar a matriz : loop sobre e se então é repetido. Você o resolve em tempo ao custo da memória que é e porque seus números inteiros estão entre e .B n 0 A B[A[i]] i B A B[A[i]]>1 A[i] O(n) O(n) 1 n−5
fonte
A solução na resposta do fade2black é a padrão, mas usaO(n) espaço. Você pode melhorar isso para o espaço O(1) seguinte maneira:
Esse algoritmo assume o modelo da máquina de RAM, no qual operações aritméticas básicas em palavras de bits levam tempo O ( 1 ) .O(logn) O(1)
Outra maneira de formular esta solução é nas seguintes linhas:
Essa solução mostra que, se substituirmos 5 por , obteremos (acredito) um algoritmo O ( d 2 n ) usando espaço O ( d 2 ) , que executa operações aritméticas O ( d n ) em números inteiros de comprimento de bits O ( d log n ) , mantendo no máximo O ( d ) destes a qualquer momento. (Isso requer uma análise cuidadosa das multiplicações que realizamos, a maioria das quais envolve um operando de comprimento apenas O ( log nd O(d2n) O(d2) O(dn) O(dlogn) O(d) .) É concebível que isso possa ser aprimorado para O ( d n ) tempo e O ( d ) espaço usando aritmética modular.O(logn) O(dn) O(d)
fonte
There's also a linear time and constant space algorithm based on partitioning, which may be more flexible if you're trying to apply this to variants of the problem that the mathematical approach doesn't work well on. This requires mutating the underlying array and has worse constant factors than the mathematical approach. More specifically, I believe the costs in terms of the total number of valuesn and the number of duplicates d are O(nlogd) and O(d) respectively, though proving it rigorously will take more time than I have at the moment.
Algorithm
Start with a list of pairs, where the first pair is the range over the whole array, or[(1,n)] if 1-indexed.
Repeat the following steps until the list is empty:
Cursory analysis of time complexity.
Steps 1 to 6 takeO(j−i) time, since finding the minimum and maximum and partitioning can be done in linear time.
Every pair(i,j) in the list is either the first pair, (1,n) , or a child of some pair for which the corresponding subarray contains a duplicate element. There are at most d⌈log2n+1⌉ such parents, since each traversal halves the range in which a duplicate can be, so there are at most 2d⌈log2n+1⌉ total when including pairs over subarrays with no duplicates. At any one time, the size of the list is no more than 2d .
Consider the work to find any one duplicate. This consists of a sequence of pairs over an exponentially decreasing range, so the total work is the sum of the geometric sequence, orO(n) . This produces an obvious corollary that the total work for d duplicates must be O(nd) , which is linear in n .
To find a tighter bound, consider the worst-case scenario of maximally spread out duplicates. Intuitively, the search takes two phases, one where the full array is being traversed each time, in progressively smaller parts, and one where the parts are smaller thannd so only parts of the array are traversed. The first phase can only be logd deep, so has cost O(nlogd) , and the second phase has cost O(n) because the total area being searched is again exponentially decreasing.
fonte
Leaving this as an answer because it needs more space than a comment gives.
You make a mistake in the OP when you suggest a method. Sorting a list and then transversing itO(nlogn) time, not O(n2logn) time. When you do two things (that take O(f) and O(g) respectively) sequentially then the resulting time complexity is O(f+g)=O(maxf,g) (under most circumstances).
In order to multiply the time complexities, you need to be using a for loop. If you have a loop of lengthf and for each value in the loop you do a function that takes O(g) , then you'll get O(fg) time.
So, in your case you sort inO(nlogn) and then transverse in O(n) resulting in O(nlogn+n)=O(nlogn) . If for each comparison of the sorting algorithm you had to do a computation that takes O(n) , then it would take O(n2logn) but that's not the case here.
In case your curious about my claim thatO(f+g)=O(maxf,g) , it's important to note that that's not always true. But if f∈O(g) or g∈O(f) (which holds for a whole host of common functions), it will hold. The most common time it doesn't hold is when additional parameters get involved and you get expressions like O(2cn+nlogn) .
fonte
There's an obvious in-place variant of the boolean array technique using the order of the elements as the store (where
arr[x] == x
for "found" elements). Unlike the partition variant that can be justified for being more general I'm unsure when you'd actually need something like this, but it is simple.This just repeatedly putsn since each swap makes its exit condition correct.
arr[idx]
at the locationarr[idx]
until you find that location already taken, at which point it must be a duplicate. Note that the total number of swaps is bounded byfonte
while
loop runs in constant time on average. Otherwise, this isn't a linear-time algorithm.Subtract the values you have from the sum∑ni=1i=(n−1)⋅n2 .
So, afterΘ(n) time (assuming arithmetic is O(1), which it isn't really, but let's pretend) you have a sum σ1 of 5 integers between 1 and n:
Supposedly, this is no good, right? You can't possibly figure out how to break this up into 5 distinct numbers.
Ah, but this is where it gets to be fun! Now do the same thing as before, but subtract the squares of the values from∑ni=1i2 . Now you have:
See where I'm going with this? Do the same for powers 3, 4 and 5 and you have yourself 5 independent equations in 5 variables. I'm pretty sure you can solve forx⃗ .
Caveats: Arithmetic is not really O(1). Also, you need a bit of space to represent your sums; but not as much as you would imagine - you can do most everything modularly, as long as you have, oh,⌈log(5n6)⌉ bits; that should do it.
fonte
Easiest way to solve the problem is to create array in which we will count the apperances for each number in the original array, and then traverse all number from1 to n−5 and check if the number appears more than once, the complexity for this solution in both memory and time is linear, or O(N)
fonte
Map an array to
1 << A[i]
and then XOR everything together. Your duplicates will be the numbers where corresponding bit is off.fonte
fonte
collated[item].append(item)
runs in constant time. Is that really true?