O que significa tornar o tamanho da amostra uma variável aleatória?

18

Frank Harrell iniciou um blog ( Statistical Thinking) . Em seu post principal , ele lista algumas características principais de sua filosofia estatística. Entre outros itens, inclui:

  • Torne o tamanho da amostra uma variável aleatória sempre que possível
  1. O que significa "tornar o tamanho da amostra uma variável aleatória"?
  2. Quais são as vantagens de fazer isso? Por que seria preferível?
- Reinstate Monica
fonte
Na análise seqüencial, o tempo de ocorrência de um evento é tratado como uma variável aleatória. Isso também é verdadeiro para o tamanho da amostra.
Michael R. Chernick
@ RichardHardy, isso deve ser discutido no Meta validado cruzado . Criei a tag b / c, não tínhamos 1 e há muitas perguntas sobre o ACF, etc. Sempre poderíamos torná-lo um sinônimo.
gung - Restabelece Monica

Respostas:

13

Não pretendo usar modelos próximos ao processo de coleta de dados, mas sim fazer um monitoramento bayesiano contínuo das probabilidades posteriores, que não exigem penalidade pela multiplicidade. Em vez de calcular um tamanho de amostra alvo arbitrário, prefiro calcular o tamanho máximo possível da amostra (para aprovação do orçamento) e parar de "quando obtivermos a resposta", como geralmente é feito com bom efeito na física. Vou dizer mais sobre isso no meu blog http://fharrell.com algum dia antes.

Frank Harrell
fonte
1
O que significa "quando obtemos a resposta" significa concretamente? Eu pensaria que a execução de um estudo até você obter o resultado desejado (por exemplo, um intervalo de 95% de credibilidade não inclui 0) seria tão corrompida em um contexto bayesiano quanto em um freqüentador.
gung - Restabelece Monica
1
@gung nem um pouco. A inferência bayesiana é completamente independente da regra de parada. É fácil simular a calibração das probabilidades posteriores no momento da parada precoce, mostrando que elas estão exatamente corretas. Essa é uma das diferenças surpreendentes com o mundo frequentista. Em geral, as probabilidades para a frente são livres de contexto e as probabilidades para trás dependem de como você chegou lá. Então eu pararia quando a probabilidade posterior do efeito ser> 0 exceder algum número como 0,95 ou quando o intervalo credível tiver largura <algum número especificado.
Frank Harrell
1
Sua resposta ao comentário de @ gung me parece implorar a pergunta: alguns leitores podem sentir que, se a inferência bayesiana realmente permitir "amostrar uma conclusão precipitada", tanto pior para a inferência bayesiana. (Eu as remeto para as referências no terceiro parágrafo aqui .) Ansioso para o seu próximo post!
Scortchi - Restabelece Monica
A amostragem para uma conclusão incorreta anterior só acontece se o prior usado pelo estatístico entrar em conflito com o prior usado pelo revisor. Por exemplo, se o revisor coloca uma massa de probabilidade no nulo (ou seja, o anterior tem um estado absorvente) e o modelo usado não coloca ênfase especial no nulo, a análise pode indicar parada para um efeito positivo, mas o revisor diz que há evidência insuficiente para um efeito. Se você simular estudos com um determinado prior e analisar usando o mesmo anterior, os probs posteriores serão perfeitamente calibrados e as médias posteriores também serão perfeitas.
Frank Harrell