Regressão logística bayesiana regularizada no JAGS

13

Existem vários artigos pesados ​​em matemática que descrevem o laço bayesiano, mas eu quero testar o código JAGS correto que eu possa usar.

Alguém poderia postar um exemplo de código BUGS / JAGS que implementa regressão logística regularizada? Qualquer esquema (L1, L2, Elasticnet) seria ótimo, mas Lasso é o preferido. Também me pergunto se existem estratégias de implementação alternativas interessantes.

Jack Tanner
fonte

Respostas:

19

Como a regularização L1 é equivalente a um Laplace (duplo exponencial) antes dos coeficientes relevantes, você pode fazer o seguinte. Aqui eu tenho três variáveis ​​independentes x1, x2 e x3, e y é a variável de destino binário. A seleção do parâmetro de regularização é feita aqui, colocando um hyperprior nele, neste caso apenas uniforme em uma faixa de bom tamanho.λ

model {
  # Likelihood
  for (i in 1:N) {
    y[i] ~ dbern(p[i])

    logit(p[i]) <- b0 + b[1]*x1[i] + b[2]*x2[i] + b[3]*x3[i]
  }

  # Prior on constant term
  b0 ~ dnorm(0,0.1)

  # L1 regularization == a Laplace (double exponential) prior 
  for (j in 1:3) {
    b[j] ~ ddexp(0, lambda)  
  }

  lambda ~ dunif(0.001,10)
  # Alternatively, specify lambda via lambda <- 1 or some such
}

Vamos testá-lo usando o dclonepacote no R!

library(dclone)

x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)

prob <- exp(x1+x2+x3) / (1+exp(x1+x2+x3))
y <- rbinom(100, 1, prob)

data.list <- list(
  y = y,
  x1 = x1, x2 = x2, x3 = x3,
  N = length(y)
)

params = c("b0", "b", "lambda")

temp <- jags.fit(data.list, 
                 params=params, 
                 model="modela.jags",
                 n.chains=3, 
                 n.adapt=1000, 
                 n.update=1000, 
                 thin=10, 
                 n.iter=10000)

E aqui estão os resultados, comparados a uma regressão logística não regulamentada:

> summary(temp)

<< blah, blah, blah >> 

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

          Mean     SD Naive SE Time-series SE
b[1]   1.21064 0.3279 0.005987       0.005641
b[2]   0.64730 0.3192 0.005827       0.006014
b[3]   1.25340 0.3217 0.005873       0.006357
b0     0.03313 0.2497 0.004558       0.005580
lambda 1.34334 0.7851 0.014333       0.014999

2. Quantiles for each variable: << deleted to save space >>

> summary(glm(y~x1+x2+x3, family="binomial"))

  << blah, blah, blah >>

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  0.02784    0.25832   0.108   0.9142    
x1           1.34955    0.32845   4.109 3.98e-05 ***
x2           0.78031    0.32191   2.424   0.0154 *  
x3           1.39065    0.32863   4.232 2.32e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

<< more stuff deleted to save space >>

E podemos ver que os três bparâmetros foram realmente reduzidos a zero.

Não sei muito sobre as anteriores para o hiperparâmetro da distribuição de Laplace / o parâmetro de regularização, lamento dizer. Eu costumo usar distribuições uniformes e olhar para o posterior para ver se parece razoavelmente bem-comportado, por exemplo, não empilhado perto de um ponto final e praticamente atingido o pico no meio sem horríveis problemas de assimetria. Até agora, esse costuma ser o caso. Tratar isso como um parâmetro de variação e usar as recomendações de Gelman Distribuições anteriores para parâmetros de variação em modelos hierárquicos também funcionam para mim.

jbowman
fonte
1
Você é o melhor! Deixarei a questão em aberto por um tempo, caso alguém tenha outra implementação. Por um lado, parece que indicadores binários podem ser usados ​​para impor inclusão / exclusão variável. Isso compensa o fato de que, sob o laço bayesiano, a seleção variável não ocorre de fato, uma vez que os betas com o duplo exponencial anterior não terão posteriores que são exatamente zero.
Jack Tanner
Certo, eu também faço isso. É semelhante a criar um prior com uma massa de pontos em 0 e, em seguida, usar o truque de zeros para fazer uma amostra dele (o prior embEutorna-se uma mistura de uma massa pontual em 0 e um exponencial duble), embora o código seja diferente. Ficarei interessado em ver o que as outras pessoas fazem, +1 à pergunta.
jbowman