Eu sou novo na linguagem R. Eu gostaria de saber como simular a partir de um modelo de regressão linear múltipla que atenda às quatro suposições da regressão.
ok .. obrigado.
Digamos que eu queira simular os dados com base neste conjunto de dados:
y<-c(18.73,14.52,17.43,14.54,13.44,24.39,13.34,22.71,12.68,19.32,30.16,27.09,25.40,26.05,33.49,35.62,26.07,36.78,34.95,43.67)
x1<-c(610,950,720,840,980,530,680,540,890,730,670,770,880,1000,760,590,910,650,810,500)
x2<-c(1,1,3,2,1,1,3,3,2,2,1,3,3,2,2,2,3,3,1,2)
fit<-lm(y~x1+x2)
summary(fit)
então eu recebo a saída:
Call:
lm(formula = y ~ x1 + x2)
Residuals:
Min 1Q Median 3Q Max
-13.2805 -7.5169 -0.9231 7.2556 12.8209
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.85352 11.33229 3.782 0.00149 **
x1 -0.02534 0.01293 -1.960 0.06662 .
x2 0.33188 2.41657 0.137 0.89238
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.679 on 17 degrees of freedom
Multiple R-squared: 0.1869, Adjusted R-squared: 0.09127
F-statistic: 1.954 on 2 and 17 DF, p-value: 0.1722
Minha pergunta é como simular um novo dado que imite os dados originais acima?
r
multiple-regression
simulation
Nor Hisham Haron
fonte
fonte
rnorm()
vez de11:30
), mas não importa o quanto aumente o erro (sigma), os erros padrão da estimativa são aproximadamente semelhantes.Aqui está outro código para gerar regressão linear múltipla com erros, seguindo a distribuição normal:
fonte