Eu li que computadores quânticos podem resolver 'certos problemas' exponencialmente melhor do que computadores clássicos. Como eu acho que entendo, NÃO é o mesmo dizer que computadores quânticos pegam quaisquer problemas EXPTIME-complete, 2-EXPTIME, ... e os convertem em tempo linear ou tempo constante.
Eu gostaria de saber algo mais sobre este assunto:
- Por que um computador quântico pode / não pode resolver problemas exponenciais em tempo subexponencial?
- É pelo menos teoricamente possível imaginar um computador (quântico ou não) capaz de resolver problemas EXPTIME-completos em tempo constante? Ou isso leva a uma contradição?
EDITAR um terceiro item relacionado:
- Computadores quânticos podem fazer computação paralela?
Agora que o assunto surgiu dos comentários, a idéia sobre computação paralela, essa é a visão comum / pop sobre computadores quânticos, como se os computadores quânticos fossem capazes de calcular "todas as possibilidades de uma vez" de qualquer problema (acho que se esse fosse o Nesse caso, não seria necessário chamar Peter Shor para inventar um algoritmo de fatoração!). Então, a pergunta "por que" sobre computadores quânticos pode / não pode fazer computação paralela é metade da ciência da computação e da física.
Aqui está uma fonte de confusão: http://physics.about.com/od/physicsqtot/g/quantumparallel.htm
fonte
Respostas:
Por que um computador quântico não pode resolver problemas exponenciais em tempo subexponencial? Acredita-se que alguns fatores levem em consideração o fatorial para alguns , enquanto o algoritmo de Shor leva o tempo . Isso conta?2nϵ ϵ>0 O(n3)
É pelo menos teoricamente possível imaginar um computador capaz de resolver problemas EXPTIME-completos em tempo constante? Claro, considere uma máquina de Turing com acesso da Oracle a todos os problemas EXPTIME (ou seja, o oracle aceita o código de uma máquina EXPTIME e uma entrada e retorna a saída). Isso não leva a nenhuma contradição. Isso é realizável na prática? Provavelmente não.
Computadores quânticos podem fazer computação paralela? Sabe-se que BQP PP EXPTIME, e a maioria das pessoas espera que essas inclusões sejam adequadas. Sob essa conjectura, existem problemas solucionáveis no tempo exponencial clássico, mas não no tempo polinomial quântico. Em particular, problemas EXPTIME-complete não devem estar no BQP.⊆ ⊆
fonte
Certamente é possível imaginar computadores capazes de resolver certos problemas (EXPTIME-complete ou não) em tempo constante. Esses computadores são chamados de " máquinas oracle " e são uma ferramenta importante no estudo da teoria da complexidade. No entanto, não é necessariamente possível construir essas máquinas .
fonte