Estimando parâmetros de distribuição gama usando média da amostra e padrão

19

Estou tentando estimar os parâmetros de uma distribuição gama que melhor se ajusta à minha amostra de dados. Eu só quero usar a média , std (e, portanto, a variação ) da amostra de dados, não os valores reais - já que esses nem sempre estarão disponíveis no meu aplicativo.

De acordo com este documento, as seguintes fórmulas podem ser aplicadas para estimar a forma e a escala: fórmulas

Eu tentei isso com meus dados, no entanto, os resultados são muito diferentes em comparação com o ajuste de uma distribuição gama nos dados reais, usando uma biblioteca de programação python.

Anexo meus dados / código para mostrar o problema em questão:

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gamma

data = [91.81, 10.02, 27.61, 50.48, 3.34, 26.35, 21.0, 79.27, 31.04, 8.85, 109.2, 15.52, 11.03, 41.09, 10.75, 96.43, 109.52, 33.28, 7.66, 65.44, 52.43, 19.25, 10.97, 586.52, 56.91, 157.18, 434.74, 16.07, 334.43, 6.63, 108.41, 4.45, 42.03, 39.75, 300.17, 4.37, 343.19, 32.04, 42.57, 29.53, 276.75, 15.43, 117.67, 75.47, 292.43, 457.91, 5.49, 17.69, 10.31, 58.91, 76.94, 37.39, 64.46, 187.25, 30.0, 9.94, 83.05, 51.11, 17.68, 81.98, 4.41, 33.24, 20.36, 8.8, 846.0, 154.24, 311.09, 120.72, 65.13, 25.52, 50.9, 14.27, 17.74, 529.82, 35.13, 124.68, 13.21, 88.24, 12.12, 254.32, 22.09, 61.7, 88.08, 18.75, 14.34, 931.67, 19.98, 50.86, 7.71, 5.57, 8.81, 14.49, 26.74, 13.21, 8.92, 26.65, 10.09, 7.74, 21.23, 66.35, 31.81, 36.61, 92.29, 26.18, 20.55, 17.18, 35.44, 6.63, 69.0, 8.81, 19.87, 5.46, 29.81, 122.01, 57.83, 33.04, 9.91, 196.0, 34.26, 34.31, 36.55, 7.74, 6.68, 6.83, 18.83, 6.6, 50.78, 95.65, 53.91, 81.62, 57.96, 26.72, 76.25, 5.48, 4.43, 133.04, 33.37, 45.26, 30.51, 9.98, 11.08, 28.95, 71.25, 70.65, 3.34, 12.28, 111.67, 139.86, 23.34, 30.0, 26.38, 33.51, 1112.64, 25.87, 148.59, 552.79, 11.11, 47.8, 7.8, 9.98, 7.69, 85.46, 3.59, 122.71, 32.09, 82.51, 12.14, 12.57, 8.8, 49.61, 95.41, 26.99, 13.29, 4.57, 7.78, 4.4, 6.66, 12.17, 12.18, 1533.01, 22.95, 15.93, 14.82, 2.2, 12.04, 9.94, 17.64, 6.66, 18.64, 83.66, 142.99, 30.76, 67.57, 9.88, 46.44, 19.5, 22.2, 43.1, 653.67, 9.86, 7.69, 7.74, 27.19, 38.64, 12.32, 182.34, 43.13, 3.28, 14.32, 69.78, 32.2, 17.66, 18.67, 4.4, 9.05, 56.94, 33.32, 13.2, 15.07, 12.73, 3.32, 35.44, 14.35, 66.68, 51.28, 6.86, 75.49, 5.54, 21.0, 24.2, 38.1, 13.31, 7.78, 5.76, 51.86, 11.09, 20.71, 36.74, 21.97, 10.36, 32.04, 96.94, 13.93, 51.84, 6.88, 27.58, 100.56, 20.97, 828.16, 6.63, 32.15, 19.92, 253.23, 25.35, 23.35, 17.6, 43.18, 19.36, 13.7, 3.31, 22.99, 26.58, 4.43, 2.22, 55.46, 22.34, 13.24, 86.18, 181.29, 52.15, 5.52, 21.12, 34.24, 49.78, 14.37, 39.73, 78.22, 26.6, 20.19, 26.57, 105.8, 11.08, 46.47, 52.82, 13.46, 8.0, 7.74, 49.73, 4.4, 5.44, 51.7, 28.64, 8.95, 9.15, 4.46, 21.03, 29.92, 19.89, 4.38, 19.94, 7.77, 23.43, 57.07, 86.5, 12.82, 103.85, 39.63, 8.83, 42.32, 17.02, 14.29, 16.75, 24.4, 27.97, 8.83, 8.91, 24.23, 6.58, 30.97, 150.58, 122.73, 17.69, 37.11, 11.05, 298.23, 25.58, 9.91, 38.85, 17.24, 82.17, 42.11, 3.29, 38.63, 27.55, 18.22, 127.16, 57.66, 34.45, 41.26, 45.91, 9.88, 34.48, 484.33, 58.42, 30.09, 6.69, 254.49, 1313.58, 39.89, 3.31, 7.83, 10.98, 13.21, 67.78, 7.77, 117.72, 20.03, 83.23, 31.28, 38.97, 6.63, 6.63, 36.6, 22.12, 154.57, 112.65, 19.88, 674.18, 83.31, 5.54, 8.81, 11.06, 178.33, 30.47, 1180.39, 79.33, 37.74, 86.3, 16.61, 53.94, 52.78, 20.83, 11.15, 26.68, 86.04, 180.26, 99.62, 11.17, 28.74, 56.85, 15.51, 95.37, 44.09, 6.68, 12.14, 6.72, 19.81, 10.05, 34.26, 69.84, 14.35, 17.72, 8.81, 20.86, 37.69, 24.62, 72.11, 8.83, 7.69, 60.79, 20.02, 9.41, 13.24, 29.8, 43.09, 25.34, 174.34, 161.6, 119.34, 30.08, 54.15, 7.74, 249.29, 9.98, 21.87, 38.92, 98.45, 95.07, 7.74, 4.45, 81.98, 12.18, 28.66, 5.58, 59.94, 22.15, 9.98, 18.86, 6.69, 134.97, 13.29, 4.43, 8.88, 5.74, 25.16, 122.39, 3.53, 6.68, 3.4, 17.58, 62.51, 584.3, 46.63, 21.19, 22.14, 5.74, 8.19, 7.74, 7.64, 4.41, 3.32, 130.76, 3.29, 31.04, 3.26, 18.83, 168.31, 7.68, 120.19, 43.95, 747.12, 18.75, 306.24, 29.72, 5.57, 6.65, 53.2, 7.96, 25.34, 25.57, 8.85, 93.59, 92.96, 23.4, 60.0, 6.63, 12.15, 49.98, 39.75, 7.77, 5.73, 18.74, 11.58, 281.32, 13.99, 4.59, 13.35, 25.05, 9.98, 5.58, 91.43, 288.94, 15.43, 7.8, 9.92, 18.69, 6.63, 78.38, 18.86, 63.03, 26.38, 166.41, 27.78, 54.21, 173.32, 11.12, 17.85, 14.43, 31.31, 3.37, 16.63, 5.51, 77.74, 8.89, 17.71, 3.24, 9.28, 22.12, 2.2, 19.41, 12.23, 22.31, 9.36, 18.85, 51.5, 8.3, 23.0, 29.7, 29.81, 4.65, 75.77, 55.52, 144.45, 6.68, 13.26, 72.78, 56.71, 46.35, 6.63, 8.88, 6.61, 41.7, 15.09, 5.51, 18.78, 74.09, 487.0, 27.52, 18.99, 44.18, 41.76, 6.65, 23.62, 175.68, 446.38, 87.13, 165.69, 16.57, 7.88, 16.57, 80.17, 135.75, 3.29, 134.16, 25.58, 45.13, 114.23, 471.15, 97.75, 12.2, 32.01, 62.21, 22.36, 193.55, 210.65, 42.39, 27.57, 106.15, 44.76, 16.6, 134.76, 18.81, 14.76, 7.97, 160.59, 39.21, 60.36, 62.45, 72.18, 91.15, 23.71, 105.04, 70.87, 25.57, 122.09, 60.09, 38.8, 133.87, 4.41, 13.28, 45.63, 45.41, 67.81, 26.68, 97.33, 723.5, 5.51, 164.05, 165.32, 4.45, 57.67, 85.82, 11.56, 12.26, 17.97, 31.04, 76.72, 15.01, 35.88, 32.37, 23.63, 85.57, 9.34, 4.45, 90.25, 73.71, 45.99, 14.24, 176.85, 65.21, 9.92, 15.02, 12.9, 21.4, 59.94, 64.62, 37.53, 147.89, 36.52, 97.67, 16.65, 22.1, 23.38, 76.85, 16.58, 7.72, 17.75, 91.25, 9.91, 18.46, 4.45, 3.29, 73.18, 19.5, 5.58, 18.85, 28.64, 7.8, 43.74, 4.43, 7.99, 132.4, 41.48, 14.45, 8.78, 8.14, 9.95, 2.46, 16.61, 32.71, 17.74, 4.46, 68.25, 34.55, 9.92, 181.31, 37.63, 125.22, 25.37, 24.45, 220.92, 11.09, 35.46, 588.56, 58.21, 22.39, 78.55, 135.13, 280.65, 273.41, 381.07, 60.56, 68.63, 40.17, 27.68, 23.68, 23.15, 28.8, 20.94, 21.92, 159.06, 9.94, 127.52, 32.4, 15.93, 99.09, 48.31, 104.66, 257.4, 117.08, 180.32, 66.55, 95.99, 17.74, 30.14, 270.54, 39.8, 54.77, 16.04, 76.99, 5.43, 8.78, 76.96, 10.39, 18.47, 290.11, 48.35, 289.06, 10.44, 57.75, 47.83, 101.62, 96.3, 71.62, 256.97, 149.45, 22.17, 23.15, 89.25, 36.46, 90.03, 69.14, 28.27, 28.72, 17.44, 43.38, 56.72, 84.96, 25.4, 55.06, 47.68, 92.11, 6.65, 30.94, 15.38, 27.44, 516.55, 5.83, 19.45, 41.53, 110.69, 6.82, 54.09, 13.31, 89.8, 25.57, 110.89, 3.32, 93.76, 33.81, 80.87, 30.9, 58.53, 185.22, 4.38, 58.75, 189.53, 7.19, 7.8, 48.97, 28.8, 48.52, 45.96, 309.44, 29.16, 2.22, 255.91, 78.7, 102.67, 33.32, 43.2, 19.5, 91.59, 139.89, 5.51, 213.96, 10.02, 10.03, 39.87, 8.95, 27.74, 7.78, 65.93, 45.41, 263.21, 33.06, 5.54, 59.77, 2.2, 9.95, 14.38, 44.76, 96.45, 15.91, 133.07, 38.03, 36.43, 7.83, 105.41, 20.5, 25.35, 20.55, 119.59, 24.31, 28.81, 101.0, 67.0, 143.85, 20.55, 83.45, 60.62, 25.19, 6.65, 1745.95, 41.62, 44.96, 65.42, 9.92, 24.23, 73.56, 34.35, 75.72, 18.77, 88.59, 312.55, 56.43, 106.61, 11.44, 22.04, 5.73, 197.92, 25.32, 144.83, 145.36, 4.43, 18.33, 48.72, 33.42, 8.83, 18.85, 32.25, 88.56, 14.95, 147.39, 9.25, 35.24, 141.51, 14.41, 5.49, 42.28, 75.69, 16.96, 6.71, 17.33, 710.34, 68.92, 28.39, 24.98, 33.03, 31.06, 46.24, 36.77, 43.74, 11.48, 22.14, 13.21, 15.8, 21.9, 5.51, 20.66, 22.04, 127.0, 21.03, 36.75, 61.45, 42.12, 238.3, 57.43, 28.61, 31.31, 15.43, 8.88, 54.26, 34.01, 5.79, 8.02, 25.68, 19.67, 29.19, 4.38, 15.05, 5.57, 32.31, 81.68, 29.92, 397.98, 119.2, 5.52, 25.54, 12.78, 17.78, 100.97, 253.58, 8.92, 22.04, 22.03, 86.57, 97.27, 106.29, 33.31, 13.34, 35.57, 40.75, 6.57, 23.32, 6.63, 30.09, 62.39, 35.62, 25.23, 5.49, 77.67, 4.41, 8.77, 12.09, 32.0, 7.75, 25.44, 27.57, 25.51, 81.59, 8.83, 64.15, 48.92, 52.25, 2.2, 13.29, 15.52, 320.64, 22.26, 21.03, 79.27, 6.61, 59.38, 40.19, 43.07, 2.26, 20.97, 8.8, 205.43, 51.82, 8.78, 90.72, 6.63, 14.46, 85.62, 72.53, 29.24, 68.81, 67.6, 1.15, 13.15, 17.71, 20.06, 77.42, 167.72, 5.54, 34.45, 5.51, 54.04, 7.8, 79.91, 4.62, 66.39, 164.13, 78.1, 49.72, 19.92, 28.92, 709.25, 18.19, 875.38, 60.92, 5.55, 71.14, 301.2, 27.74, 34.26, 108.78, 88.28, 75.83, 7.82, 8.78, 44.68, 20.98, 41.9, 8.88, 124.18, 198.8, 180.0, 71.61, 119.27, 59.33, 3.28, 43.88, 14.46, 64.34, 158.59, 41.98, 32.28, 14.43, 48.49, 2.36, 14.38, 25.52, 7.83, 2.2, 292.18, 8.97, 36.18, 7.8, 8.89, 43.26, 25.35, 12.29, 6.88, 34.48, 11.09, 16.57, 35.99, 13.45, 6.6, 162.65, 13.23, 26.91, 55.62, 61.4, 48.47, 89.62, 7.77, 6.65, 11.56, 23.28, 6.66, 7.74, 4.62, 5.8, 24.56, 10.16, 8.91, 14.45, 25.37, 6.61, 75.29, 11.03, 36.75, 38.61, 36.52, 17.75, 61.87, 31.92, 120.9, 144.82, 70.98, 19.98, 80.09, 30.17, 35.48, 2.4, 42.15, 24.29, 111.26, 71.9, 158.23, 49.75, 7.75, 13.28, 10.97, 5.51, 34.37, 56.61, 138.83, 231.4, 20.17, 29.89, 20.27, 7.69, 77.35, 12.26, 1144.41, 9.95, 7.72, 196.64, 499.4, 114.38, 24.43, 94.88, 75.15, 4.48, 8.89, 196.05, 95.15, 99.28, 42.36, 234.32, 4.59, 80.97, 237.69, 89.34, 4.51, 6.68, 148.42, 108.58, 5.48, 132.38, 7.94, 204.74, 11.08, 74.24, 146.22, 79.5, 17.68, 10.51, 550.77, 45.35, 23.28, 47.57, 40.56, 114.76, 29.81, 15.51, 11.0, 26.61, 6.74, 142.82, 12.17]

Algumas informações sobre os dados:

Média: 68.71313036020582, Variação: 19112.931263699986, Desvio padrão: 138.24952536518882, Quantidade de elementos nos dados de treinamento: 1166

Histograma dos dados:

insira a descrição da imagem aqui

Usando a biblioteca python para ajuste:

x = np.linspace(0,300,1000)
# Gamma
shape, loc, scale = gamma.fit(data, floc=0)
print(shape, loc, scale)
y = gamma.pdf(x, shape, loc, scale)
plt.title('Fitted Gamma')
plt.plot(x, y)
plt.show()

gama equipada

Parâmetros: 0.7369587045435088 0 93.2387797804

Eu mesmo calculei:

def calculateGammaParams(data):
    mean = np.mean(data)
    std = np.std(data)
    shape = (mean/std)**2
    scale = (std**2)/mean
    return (shape, 0, scale)

eshape, eloc, escale = calculateGammaParams(data)
print(eshape, eloc, escale)
ey = gamma.pdf(x, eshape, eloc, escale)
plt.title('Estimated Gamma')
plt.plot(x, ey)
plt.show()

estimado

Parâmetros: 0.247031406055 0 278.155443705

Pode-se ver claramente uma enorme diferença.

DJanssens
fonte
Mostre o que você calculou como "muito longe de 1" - isso não está relacionado ao fato de as estimativas baseadas no momento serem boas ou não. Se possível, forneça seus dados (por exemplo, se o tamanho da amostra for pequeno o suficiente para incluir em sua postagem) e suas estimativas de parâmetro calculadas nos dois sentidos.
Glen_b -Reinstate Monica
Atualizei minha pergunta com dados, código de exemplo e gráficos. Espero que isso ajude a esclarecer minha pergunta.
DJanssens 19/05
1
Você parece não ter certeza de que deseja ajustar uma distribuição gama. Isso levanta a questão mais fundamental: por que você está passando por esse exercício em primeiro lugar? O que você espera conseguir ajustando qualquer distribuição aos dados?
whuber
@whuber Estou ajustando os dados para poder fazer algumas suposições sobre dados futuros - mais precisamente para identificar comportamentos extremos. Ouvi dizer que o Gamma / lognorm seria um bom ajuste para esse tipo de dados.
DJanssens

Respostas:

15

Tanto os MLEs quanto os estimadores baseados no momento são consistentes e, portanto, você esperaria que em amostras suficientemente grandes de uma distribuição gama elas tenderiam a ser bastante semelhantes. No entanto, eles não serão necessariamente iguais quando a distribuição não estiver próxima de uma gama.

Observando a distribuição do log dos dados, é aproximadamente simétrico - ou, de fato, de certa forma distorcido. Isso indica que o modelo gama é inadequado (para uma gama, o log deve ficar inclinado).

Pode ser que um modelo gama inverso possa ter um desempenho melhor para esses dados. Mas a mesma inclinação suave à direita nos logs seria vista com várias outras distribuições - não podemos dizer muito com certeza com base na direção da inclinação na escala de logs.

Isso pode ser parte da explicação de por que os dois conjuntos de estimativas são diferentes - o método dos momentos e os MLEs não tendem a ser consistentes entre si.

Você pode estimar parâmetros gama inversos invertendo os dados, ajustando uma gama e mantendo essas estimativas de parâmetros como estão. Você também pode estimar parâmetros lognormais a partir da média e do desvio padrão (várias postagens no site mostram como, ou consulte a Wikipedia ), mas quanto mais pesada a cauda da distribuição, pior será o método de estimadores de momentos.


Parece (pelos comentários abaixo da minha resposta) que o problema real é que as estimativas de parâmetros devem ser atualizadas "on-line" - para obter apenas informações resumidas, não todos os dados - e atualizar estimativas de parâmetros a partir das informações resumidas. O motivo para usar a média e variação da amostra na pergunta é que elas podem ser atualizadas rapidamente.

No entanto, elas não são as únicas coisas que podem ser atualizadas rapidamente!

fX(xθ)=exp(η(θ)T(x)A(θ)+B(x))T(x) .

θT é vetor de estatísticas suficientes - da mesma dimensão)

Para todas as distribuições que discuto (gama, lognormal, gama inversa), as estatísticas suficientes são facilmente atualizadas. Por razões de estabilidade, sugiro atualizar as seguintes quantidades (que são suficientes para as três distribuições):

  • a média dos dados

  • a média dos logs dos dados

  • a variação dos logs dos dados

sn2n versão denominador facilmente, para que você não atualize).

1nxi2x¯2 para calcular a variação - isso está problemas.]


0

Glen_b -Reinstate Monica
fonte
Obrigado pela explicação, qual seria uma distribuição mais adequada, se posso perguntar?
DJanssens
Fiz uma sugestão em uma edição ... uma gama inversa pode se encaixar melhor - ou mesmo várias outras possibilidades consistentes com essa observação sobre os registros.
Glen_b -Reinstala Monica
Eu ajustei a gama inversa usando a biblioteca python e os resultados parecem muito promissores. No entanto, não consigo descobrir como encontrar a forma e a escala do invgamma analiticamente. Eu pensei que usaria a mesma calculateGammaParams()função que eu escrevi e simplesmente inverter a escala e a forma, fazendo 1 / scale e 1 / shape. No entanto, isso parece errado. Os parâmetros ajustados são 0.918884418421 0 14.8279520471, enquanto minhas estimativas são:0.247031406055 0 278.155443705
DJanssens 19/17/17
Um lognormal não parece muito ruim.
Nick Cox
@NickCox Na verdade, tentei um lognormal antes de experimentar o Gamma. À primeira vista, parecia que o Gamma se encaixava melhor, no entanto, preciso estimar os parâmetros usando a média / variância / std da amostra. Isso também pode ser feito facilmente para o lognormal?
DJanssens 19/05
9

E(X)=αθVar[X]=αθ2αθαθα=E[X]2/Var[X]θ=Var[X]/E[X]α^=x¯2/s2θ^=s2/x¯

Esses não são os MLEs (novamente, consulte a Wikipedia ). Não sei qual biblioteca você usou para estimar os parâmetros, mas normalmente essas bibliotecas produzem MLEs. E esses podem ser bem diferentes do que o método de estimativa de momento.

αθ

Atualizar:

Depois de postar os dados, usei R para obter os MLEs e o método de estimativa de momento. Isso produz:

> library(MASS)
> fitdistr(y, dgamma, start=list(shape=1, scale=1))
      shape         scale   
   0.73684030   93.26893829 
 ( 0.02613277) ( 4.59104121)

> mean(y)^2 / var(y)
[1] 0.2468195
> var(y) / mean(y)
[1] 278.3942

Portanto, essencialmente o mesmo que foi obtido com o Python. Portanto, as estimativas simplesmente são tão diferentes usando a estimativa de probabilidade máxima versus o método dos momentos.

Wolfgang
fonte
1
Atualizei minha pergunta com os dados, gráficos e código de exemplo. Acredito que usei as fórmulas que você mencionou para calcular a forma e a escala. Não tenho certeza do que estou fazendo de errado.
DJanssens 19/05
1
Obrigado pela informação Wolfgang, é muito apreciada.
DJanssens