Suponha que tenhamos variáveis aleatórias IID com a distribuição . Vamos observar uma amostra do é da seguinte maneira: vamos ser independente variáveis aleatórias, suponha que todos os 's e são independentes e definem o tamanho da amostra . Os's indicam qual dos' s são na amostra, e que quer estudar a fracção de sucessos na amostra definido pelo
Para, queremos encontrar um limite superior para que decai exponencialmente com . A desigualdade de Hoeffding não se aplica imediatamente por causa das dependências entre as variáveis.
Respostas:
Podemos estabelecer uma conexão com a desigualdade de Hoeffding de uma maneira bastante direta .
Note-se que temos
Defina para que Z i seja iid, E Z i = 0 e P ( Z > θ + ϵ ) = P ( ∑ i Z i > n ϵ / 2 ) ≤ e - n ε 2 / 2Zi=(Xi−θ−ϵ)Yi+ϵ/2 Zi EZi=0
Através de uma aplicação simples dadesigualdade de Hoeffding(uma vez que o Z i ∈ [ - θ - ε / 2 , 1 - θ - ε / 2 ] e assim tomar valores num intervalo de tamanho um).
Existe uma rica e fascinante literatura relacionada que se desenvolveu nos últimos anos, em particular sobre tópicos relacionados à teoria da matriz aleatória com várias aplicações práticas. Se você está interessado nesse tipo de coisa, recomendo:
Penso que a exposição é clara e fornece uma maneira muito agradável de se acostumar rapidamente à literatura.
fonte
Details to take care of theN=0 case.
For Alecos.
fonte
This answer keeps mutating. The current version does not relate to the discussion I had with @cardinal in the comments (although it was through this discussion that I thankfully realized that the conditioning approach did not appear to lead anywhere).
For this attempt, I will use another part of Hoeffding's original 1963 paper, namely section 5 "Sums of Dependent Random Variables".
Set
while we setWi=0 if ∑ni=1Yi=0 .
Then we have the variable
We are interested in the probability
As for many other inequalities, Hoeffding starts his reasoning by noting that
For the dependent-variables case, as Hoeffding we use the fact that∑ni=1Wi=1 and invoke Jensen's inequality for the (convex) exponential function, to write
and linking results to arrive at
Focusing on our case, sinceWi and Xi are independent, expected values can be separated,
In our case, theXi are i.i.d Bernoullis with parameter θ , and E[ehXi] is their common moment generating function in h , E[ehXi]=1−θ+θeh . So
Minimizing the RHS with respect toh , we get
Plugging it into the inequality and manipulating we obtain
while
Hoeffding shows that
Courtesy of the OP (thanks, I was getting a bit exhausted...)
So, finally, the "dependent variables approach" gives us
Let's compare this to Cardinal's bound, that is based on an "independence" transformation,BI . For our bound to be tighter, we need
So forn≤4 we have BD≤BI . For n≥5 , pretty quickly BI becomes tighter than BD but for very small ϵ , while even this small "window" quickly converges to zero. For example, for n=12 , if ϵ≥0.008 , then BI is tighter. So in all, Cardinal's bound is more useful.
COMMENTWi 's are numbers, not random variables, while each Xi is a sum of independent random variables, while the dependency may exist between the Xi 's. He then considers various "U-statistics" that can be represented in this way.
To avoid misleading impressions regarding Hoeffding's original paper, I have to mention that Hoeffding examines the case of a deterministic convex combination of dependent random variables. Specificaly, his
fonte