É possível testar se um número computável é racional ou inteiro?
É possível testar algoritmicamente se um número computável é racional ou inteiro? Em outras palavras, seria possível para uma biblioteca que implementa números computáveis fornecer as funções isIntegerou isRational? Suponho que isso não seja possível e que isso esteja de alguma forma relacionado...
computability
computing-over-reals
lambda-calculus
graph-theory
co.combinatorics
cc.complexity-theory
reference-request
graph-theory
proofs
np-complete
cc.complexity-theory
machine-learning
boolean-functions
combinatory-logic
boolean-formulas
reference-request
approximation-algorithms
optimization
cc.complexity-theory
co.combinatorics
permutations
cc.complexity-theory
cc.complexity-theory
ai.artificial-intel
p-vs-np
relativization
co.combinatorics
permutations
ds.algorithms
algebra
automata-theory
dfa
lo.logic
temporal-logic
linear-temporal-logic
circuit-complexity
lower-bounds
permanent
arithmetic-circuits
determinant
dc.parallel-comp
asymptotics
ds.algorithms
graph-theory
planar-graphs
physics
max-flow
max-flow-min-cut
fl.formal-languages
automata-theory
finite-model-theory
dfa
language-design
soft-question
machine-learning
linear-algebra
db.databases
arithmetic-circuits
ds.algorithms
machine-learning
ds.data-structures
tree
soft-question
security
project-topic
approximation-algorithms
linear-programming
primal-dual
reference-request
graph-theory
graph-algorithms
cr.crypto-security
quantum-computing
gr.group-theory
graph-theory
time-complexity
lower-bounds
matrices
sorting
asymptotics
approximation-algorithms
linear-algebra
matrices
max-cut
graph-theory
graph-algorithms
time-complexity
circuit-complexity
regular-language
graph-algorithms
approximation-algorithms
set-cover
clique
graph-theory
graph-algorithms
approximation-algorithms
clustering
partition-problem
time-complexity
turing-machines
term-rewriting-systems
cc.complexity-theory
time-complexity
nondeterminism